Skip to main content
Log in

Colloidal crystallization of C60/polymer-grafted silica particles in organic solvent

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Synthesis of fullerene (C60)-tethered polymer-grafted silica and colloidal crystallization of the particles was investigated. The particles were prepared by the reaction of C60 with 4-azidobenzoyl groups introduced in poly(methyl methacrylate-co-2-hydroxyethyl methacrylate), followed by esterification of 2-hydroxyethyl metharylate moieties with 4-azidobenzoyl chloride and grafting onto colloidal silica. The reaction afforded bindings of C60 in the range from 0.44 × 104 to 1.71 × 104 molecules/particle. The C60 amounts did not monotonously increase with 4-azidobenzoyl group on the particles, but decreased with mole fraction of methyl methacrylate in the copolymer. Colloidal crystallizations of the C60-tethered silica particles were observed in acetonitrile with critical volume fractions in the range from 0.018 to 0.024. Inter-sphere distances in the colloidal crystals were consistent with calculated values on assumption of face-centered cubic-closed packing, and then it was suggested that the crystallization took place due to electrostatic repulsion between the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  CAS  Google Scholar 

  2. Reese CE, Mikhonin AV, Kamenjicki M, Tikhonov A, Asher SA (2004) Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc 126:1493–1496

    Article  CAS  Google Scholar 

  3. Muscatello MMW, Stunja LE, Thareja P, Wang L, Bohn JJ, Velankar SS, Asher SA (2009) Dependence of photonic crystal nanocomposite elasticity on crystalline colloidal array particle size. Macromolecules 21:4403–4406

    Article  Google Scholar 

  4. Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713

    Article  CAS  Google Scholar 

  5. Lawrence JR, Ying Y, Yiang P, Foulger SH (2006) Dynamic tuning of organic lasers with colloidal crystals. Adv Mater 18:300–303

    Article  CAS  Google Scholar 

  6. Park JH, Ohoi WS, Koo HY, Kim DY (2005) Colloidal photonic crystal with graded refractive-index distribution. Adv Mater 17:879–885

    Article  CAS  Google Scholar 

  7. Zhou J, Cai T, Tang S, Marquez M, Hu Z (2006) Growth of columnar hydrogel colloidal crystals in water−organic solvent mixture. Langmuir 22:863–866

    Article  CAS  Google Scholar 

  8. Li Y, Kunitake T, Fujikawa S, Ozasa K (2007) Photoluminescence modification in 3D-ordered films of fluorescent microspheres. Langmuir 23:9109–9113

    Article  CAS  Google Scholar 

  9. Zhou Z, Yan Q, Li Q, Zhao XS (2007) Fabrication of binary colloidal crystals and non-close-packed structures by a sequential self-assembly method. Langmuir 23:1473–1477

    Article  CAS  Google Scholar 

  10. Hosein ID, Lindell CM (2007) Homogeneous, core−shell, and hollow-shell ZnS colloid-based photonic crystals. Langmuir 23:2892–2897

    Article  CAS  Google Scholar 

  11. Weekes SM, Ogrin FY, Murray WA, Keatley PS (2007) Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir 23:1057–1060

    Article  CAS  Google Scholar 

  12. Camargo PH, Lee YH, Jeong U, Zou Z, Xia Y (2007) Cation exchange: a simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 23:2985–2992

    Article  CAS  Google Scholar 

  13. Nakamura H, Ishii M (2005) Effects of compression and shearing on the microstructure of polymer-immobilized non-close-packed colloidal crystalline arrays. Langmuir 21:11578–11581

    Article  CAS  Google Scholar 

  14. Nakamura H, Mitsuoka T, Ishii M (2006) Microstructures and optical features of polymer-immobilized non close-packed colloidal crystalline array. J Appl Polym Sci 102:2308–2314

    Article  CAS  Google Scholar 

  15. Kumada M, Watanabe M, Takeoka Y (2006) Preparations and optical properties of ordered arrays of submicron gel particles: interconnected state and trapped state. Langmuir 22:4403–4407

    Article  Google Scholar 

  16. Sakai T, Takeoka Y, Seki T, Yoshida R (2007) Organized monolayer of thermosensitive microgel beads prepared by double-template polymerization. Langmuir 23:8651–8654

    Article  CAS  Google Scholar 

  17. Toyotama A, Yamanaka J, Shinohara M, Onda S, Sawada T, Yonese M, Uchida F (2009) Gel immobilization of centimeter-sized and uniform colloidal crystals formed under temperature gradient. Langmuir 25:589–593

    Article  CAS  Google Scholar 

  18. Evanoff DD, Hayes SE, Ying Y, Shim GH, Lawrence JR, Carroll JB, Roeder RD, Houchins JM, Huebner CF, Foulger SH (2007) Functionalization of crystalline colloidal arrays through click chemistry. Adv Mater 19:3507–3512

    Article  CAS  Google Scholar 

  19. Yoshinaga K, Mouri E, Ogawa J, Nakai A, Ishii M, Nakamura H (2004) Preparation of poly(methyl methacrylate) films containing silica particle array structure from colloidal crystals. Colloid Polym Sci 283:340–343

    Article  CAS  Google Scholar 

  20. Yoshinaga K, Fujiwara K, Mouri E, Ishii M, Nakamura H (2005) Stepwise controlled immobilization of colloidal crystals formed by polymer-grafted silica particles. Langmuir 21:4471–4477

    Article  CAS  Google Scholar 

  21. Yoshinaga K, Satoh S, Mouri E, Nakai A (2006) Immobilization of colloidal crystals, formed by polymer-grafted silica in organic solvent, in physical gels. Colloid Polym Sci 285:694–698

    Article  Google Scholar 

  22. Ma Z, Watanabe M, Mouri E, Nakai A, Yoshinaga K (2011) Effects of particle volume fraction on distortion of particle-arrayed structure during immobilization of colloidal crystals formed by poly(methyl methacrylate)-grafted silica in acetonitrile. Colloid Polym Sci 289:85–91

    Article  CAS  Google Scholar 

  23. Yoshinaga K, Chiyoda M, Yoneda A, Nishida H, Komatsu M (1999) Formation of colloid crystals from polymer-modified monodisperse colloidal silica in organic solvents. Colloid Polym Sci 277:479–482

    Article  CAS  Google Scholar 

  24. Yoshinaga K, Chiyoda M, Ishiki H, Okubo T (2002) Colloidal crystallization of monodisperse and polymer-modified colloidal silica in organic solvents. Colloids Surf A 204:285–293

    Article  CAS  Google Scholar 

  25. Yoshinaga K, Fujiwara K, Tanaka Y, Nakanishi M, Takesue M (2003) Immobilization of colloidal crystals, formed from polymer-modified silica in organic solvent, in polymer gel with radical polymerization. Chem Lett 32:1082–1083

    Article  CAS  Google Scholar 

  26. Yoshinaga K, Shigeta M, Komune S, Mouri E, Nakai A (2007) Colloidal crystallization of colloidal silica modified with ferrocenyl group-containing polymers in organic solvents. Colloids Surf B 54:108–113

    Article  CAS  Google Scholar 

  27. Ma Z, Watanabe M, Mori E, Yoshinaga K (2010) Effects of ferrocenyl group on refractive index of colloidal crystal system formed by polymer-grafted silica in organic solvent. Colloid Polym Sci 288:519–525

    Article  CAS  Google Scholar 

  28. Dresselhaus MS, Dresehaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, San Diego

    Google Scholar 

  29. Bonifazi D, Enger D, Diedrich F (2007) Supramolecular [60] fullerene chemistry on surfaces. Chem Soc Rev 36:390–444

    Article  CAS  Google Scholar 

  30. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130:3619–3623

    Article  CAS  Google Scholar 

  31. Fernandez G, Sanchez L, Veldman D, Wienk MM, Atienza C, Guldi DM, Janssen RAJ, Martin N (2008) Tetrafullerene conjugates for all-organic photovoltaics. J Org Chem 73:9–3196

    Google Scholar 

  32. Yan H, Chen S, Lu M, Zhu X, Li X, Wu D, Tu Y, Zhu X (2014) Side-chain fullerene polyesters: a new class of high refractive index polyesters. Mater Horiz 1:247–250

    Article  CAS  Google Scholar 

  33. Okubo T, Okada S (1998) Kinetic analyses of colloidal crystallization in alcoholic organic solvents and their aqueous mixtures as studied by reflection spectroscopy. J Colloid Interface Sci 204:198–204

    Article  CAS  Google Scholar 

  34. Okubo T (1996) Importance of electrical double layers in structural and diffusional properties of deionized colloidal suspensions. Colloid Surf A 109:77–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Yoshinaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ohno, T. & Yoshinaga, K. Colloidal crystallization of C60/polymer-grafted silica particles in organic solvent. Colloid Polym Sci 293, 2075–2081 (2015). https://doi.org/10.1007/s00396-015-3601-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3601-0

Keywords

Navigation