Skip to main content
Log in

Spherical and core-shell fluorinated polyacrylate latex particles: preparation and characterization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Fluorinated polyacrylate particles with spherical (SP) and core-shell (CS) structures have been prepared via emulsion polymerization. Morphologies of SP and CS latex particles were observed by transmission electron microscope (TEM). The copolymer and the film were characterized by Fourier transform infrared spectroscopy (FT-IR), 19F NMR, atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), and thermogravimetry (TG-DSC) analyses. Fluorinated components in the copolymer were found to aggregate at the film surface, and the core-shell structure of latex particles contributes to occurrence of phase separation at the film surface. The film prepared from core-shell latex particles exhibits more satisfied water repellency than that obtained from spherical latex particles. Fluorine components at SP and CS film surfaces present significantly different aggregation behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas RR, Anton DR, Graham WF, Darmon MJ, Sauer BB, Stika KM et al (1997) Preparation and surface properties of acrylic polymers containing fluorinated monomers. Macromolecules 30:2883–2890

    Article  CAS  Google Scholar 

  2. Liang JY, He L, Zheng YS (2009) Synthesis and property investigation of three core-shell fluoroacrylate copolymer latexes. J Appl Polym Sci 112:1615–1621

    Article  CAS  Google Scholar 

  3. Honda K, Morita M, Sakata O, Sasaki S, Takahara A (2010) Effect of surface molecular aggregation state and surface molecular motion on wetting behavior of water on poly(fluoroalkyl methacrylate) thin films. Macromolecules 43:454–460

    Article  CAS  Google Scholar 

  4. Huang JQ, Meng WD, Qing FL (2007) Synthesis and repellent properties of vinylidene fluoride-containing polyacrylates. J Fluor Chem 128:1469–1477

    Article  CAS  Google Scholar 

  5. Yang TT, Yao L, Peng H, Cheng SY, Park IJ (2006) Characterization of a low-wettable surface based on perfluoroalkyl acrylate copolymers. J Fluor Chem 127:1105–1110

    Article  CAS  Google Scholar 

  6. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem Res 28:988–994

    Article  CAS  Google Scholar 

  7. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  8. Gao LC, McCarthy TJ (2007) How Wenzel and Cassie were wrong. Langmuir 23:3762–3765

    Article  CAS  Google Scholar 

  9. Li W, Diao YP, Wang SY, Fang GP, Wang GC, Dong XJ et al (2009) New roughness parameter for the characterization of regularly textured or ordered patterned superhydrophobic surfaces. Langmuir 25:6076–6080

    Article  CAS  Google Scholar 

  10. Nishino T, Urushihara Y, Meguro M, Nakamae K (2004) Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains. J Colloid Interface Sci 279:364–369

    Article  CAS  Google Scholar 

  11. Ha J-W, Park IJ, Kim D-K, Kim J-H, Lee S-B (2003) Surface properties of core-shell particles containing perfluoroalkyl acrylate in shell. Surf Sci 532–535:328–333

    Article  Google Scholar 

  12. Ha J-W, Park IJ, Lee S-B, Kim D-K (2002) Preparation and characterization of core–shell particles containing perfluoroalkyl acrylate in the shell. Macromolecules 35:6811–6818

    Article  CAS  Google Scholar 

  13. Katharina L, Regina R, Antonietti M (2002) Convenient synthesis of fluorinated latexes and core-shell structures by miniemulsion polymerization. Macromolecules 35:1658–1662

    Article  Google Scholar 

  14. Chen L, Zhao YR, Deng M, Yuan DX, Ni HG et al (2009) Surface properties and chain structure of fluorinated acrylate copolymers prepared by emulsion polymerization. Polym Bull 64:81–97

    Article  Google Scholar 

  15. Wang J, Zeng XR, Li HQ (2009) Preparation and characterization of soap-free fluorine-containing acrylate latex. J Coat Technol Res 7:469–477

    Article  Google Scholar 

  16. Hao LF, An QF, Xu W, Huang LX (2012) Synthesis, film morphology and hydrophobicity of novel fluorinated polyacrylate emulsion and solution on silicon wafer. Colloids Surf A 396:83–89

    Article  CAS  Google Scholar 

  17. Thomas RR, Anton DR, Graham WF, Darmon MJ, Sauer BB, Stika KM et al (1997) Preparation and surface properties of acrylic polymers containing fluorinated monomers. Macromolecules 30:2883–2890

    Article  CAS  Google Scholar 

  18. Gao JZ, Wang XM, Wei YX, Yang W (2006) Synthesis and characterization of a novel fluorine-containing polymer emulsion with core/shell structure. J Fluor Chem 127:282–286

    Article  CAS  Google Scholar 

  19. Marion P, Beinert G, Juhué D, Lang J (1997) Core-shell latex particles containing a fluorinated polymer in the shell. 2: internal structure studied by fluorescence nonradiative energy transfer. Macromolecules 30:123–129

    Article  CAS  Google Scholar 

  20. Dreher WR, Singh A, Urban MW (2005) Effect of perfluoroalkyl chain length on synthesis and film formation of fluorine-containing colloidal dispersions. Macromolecules 38:4666–4672

    Article  CAS  Google Scholar 

  21. Marion P, Beinert G, Juhué D, Lang J (1997) Core-shell latex particles containing a fluorinated polymer in the shell. Macromolecules 30:123–131

    Article  CAS  Google Scholar 

  22. Berendsen GE, Galan L (1978) Preparation and chromatographic properties of some chemically bonded phases for reversed-phase liquid chromatography. J Liq Chromatogr 1:561–586

    Article  CAS  Google Scholar 

  23. Dreher WR, Jarrett WL, Urban MW (2005) Stable nonspherical fluorine-containing colloidal dispersions: synthesis and film formation. Macromolecules 38:2205–2212

    Article  CAS  Google Scholar 

  24. Wei Y, Yichi C, Dongxiao H, Liqun Z (2013) Synthesis and characterization of the fluorinated acrylic latex: effect of fluorine-containing surfactant on properties of the latex film. J Fluor Chem 149:8–12

    Article  Google Scholar 

  25. Lina M-J, Lune TLD, Dessaint A, Clermont (1992). Fluorinated acrylic monomers as hydrophobic and oleophobic agents. US Patent 5144056, filed Mar. 14, 1989, and issued Sep. 1, 1992

  26. Daniels MW, Francis LF (1998) Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysilane-modified colloidal silica coatings. J Colloid Interface Sci 205:191–200

    Article  CAS  Google Scholar 

  27. Caruso F, Spasova M, Susha A, Giersig M, Caruso RA (2000) Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater 13:109–116

    Article  Google Scholar 

  28. Zheng K, Chen L, Li Y, Cui P (2004) Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites. Polym Eng Sci 44:1077–1082

    Article  CAS  Google Scholar 

  29. Gao Y, He CL, Huang YG, Qing FL (2010) Novel water and oil repellent POSS-based organic/inorganic nanomaterial: preparation, characterization and application to cotton fabrics. Polymer 51:5997–6004

    Article  CAS  Google Scholar 

  30. Richard E, Lakshmi RV, Aruna ST, Basu BJ (2013) A simple cost-effective and eco-friendly wet chemical process for the fabrication of superhydrophobic cotton fabrics. Appl Surf Sci 277:302–309

    Article  CAS  Google Scholar 

  31. Amalvy JI, Percy MJ, Armes SP, Wiese H (2001) Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites. Langmuir 17:4770–4778

    Article  CAS  Google Scholar 

  32. King A, Presnall D, Steely LB, Allcock HR, Wynne KJ (2013) Semicrystalline polyphosphazenes: a comparative study of topology, morphology, and contact angles for three fluorous and one aryl polyphosphazene. Polymer 54:1123–1129

    Article  CAS  Google Scholar 

  33. Nakae H, Inui R, Hirata Y, Saito H (1998) Effects of surface roughness on wettability. Acta Mater 46:2313–2318

    Article  CAS  Google Scholar 

  34. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16:5754–5760

    Article  CAS  Google Scholar 

  35. Roura P, Fort J (2002) Comment on “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces”. Langmuir 18:566–569

    Article  CAS  Google Scholar 

  36. Cho KL, Liaw II, Wu AHF, Lamb RN (2010) Influence of roughness on a transparent superhydrophobic coating. J Phys Chem A 114:11228–11233

    CAS  Google Scholar 

  37. Xiong PT, Lu DP, Chen PZ, Huang HZ, Guan R (2007) Preparation and surface properties of latexes with fluorine enriched in the shell by silicon monomer crosslinking. Eur Polym J 43:2117–2126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support from Natural Science Foundation of China (51173006) and Fundamental Research Funds for the Central Universities (YWF-11-03-Q-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqun Zhu or Yichi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhu, L. & Chen, Y. Spherical and core-shell fluorinated polyacrylate latex particles: preparation and characterization. Colloid Polym Sci 293, 2349–2357 (2015). https://doi.org/10.1007/s00396-015-3583-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3583-y

Keywords

Navigation