Skip to main content
Log in

Novel synthesis of selective phase-shape orientation of AgInS2 nanoparticles at low temperature

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, phase- and shape-controlled AgInS2 (AIS) colloidal nanoparticles are synthesized by thermal decomposition of metal xanthate at a temperature of ~110 °C in an organic solvent containing surfactant molecules. The spherical tetragonal-shaped AIS was observed when o-dichlorobenzene (DCB) with oleylamine (OLA) and trioctylphosphine (TOP) was used, while rod-shaped AIS with orthorhombic structure was observed in the presence of o-dichlorobenzene with pyridine (PY). The resulting nanoparticles are analyzed by X-ray diffraction (XRD), UV-vis, PL, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques. It is also reported that the AIS nanoparticles (NPs) synthesized in the presence of OLA and TOP show a photoluminescence properties, and their fluorescence emission wavelength can readily be tuned from the ultraviolet (UV) to the visible spectrum region by merely prolonging the reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhong H, Bai Z, Zou B (2012) J Phys Chem lett 3:3167–3175

    Article  CAS  Google Scholar 

  2. Sahs SK, Guchhait A, Pal AJ (2014) Phys Chem Chem Phys 16:4193–4201

    Article  Google Scholar 

  3. Kadlag KP, Patil P, Rao MJ, Datta S, Nag A (2014) CrystEngComm 16:3605–3612

    Article  CAS  Google Scholar 

  4. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) Prog Photovolt Res Appl 19:894–897

    Article  CAS  Google Scholar 

  5. Hug D, Persson C (2014) Chem Phys Latter 591:189–192

    Article  Google Scholar 

  6. Aazam ES (2014) J Ind Eng Chem. doi:10.1016/j.jiec.2013.12.104

    Google Scholar 

  7. Torimoto T, Kameyama T, Kuwabata S (2014) J Phys Chem Lett 5:336–347

    Article  CAS  Google Scholar 

  8. Yong KT, Roy I, Hu R, Ding H, Cai HX, Zhu J, Zhang XH, Bergey EJ, Prasad PN (2010) Integr Biol 2:121–129

    Article  CAS  Google Scholar 

  9. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) ACS Nano 4:2531–2538

    Article  CAS  Google Scholar 

  10. Allen PM, Bawendi MG (2008) J Am Chem Soc 130:9240–9241

    Article  CAS  Google Scholar 

  11. Pan D, An L, Sun Z, Hou W, Yang Y, Yang Z, Lu Y (2008) J Am Chem Soc 130:5620–5621

    Article  CAS  Google Scholar 

  12. Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Chem Mater 21:2422–2429

    Article  CAS  Google Scholar 

  13. Xie R, Rutherford M, Peng X (2009) J A Chem Soc 131:5691–5697

    Article  CAS  Google Scholar 

  14. Kino T, Kuzuya T, Itoh K, Sumiyama K, Wakamatsu T, Ichidate M (2008) Mater Trans 49:435–438

    Article  CAS  Google Scholar 

  15. Malik MA, O’Brien P, Revaprasada N (1999) Adv Mater 11:1441–1444

    Article  CAS  Google Scholar 

  16. Wu C, Shiau C, Ayele DW, Su W, Cheng M, Chiu C, Hwang B (2010) Chem Mater 22:4185–4190

    Article  CAS  Google Scholar 

  17. Aissa Z, Amlouk M, Nasrallah T, Bernede JC, Belgacem S (2007) Sol Energy Mater Sol Cells 91:489–494

    Article  CAS  Google Scholar 

  18. Hong KJ, Jeong JW, Jeong TS, Youn CJ, Lee WS, Park JS, Shin DC (2003) J Phys Chem Solids 64:1119–1124

    Article  CAS  Google Scholar 

  19. Zhang W, Li D, Chen Z, Sun M, Li W, Lin Q, Fu X (2011) Mater Res Bull 46:975–982

    Article  CAS  Google Scholar 

  20. Kharkwal A, Sharma SN, Jain K, Singh AK (2014) Mater Chem Phys 144:252–262

    Article  CAS  Google Scholar 

  21. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2003) Chem Mater 15:3142–3147

    Article  CAS  Google Scholar 

  22. Castro SL, Bailey SG, Raffaelle RP, Banger KK, Hepp AF (2004) J Phys Chem B 108:12429–12435

    Article  CAS  Google Scholar 

  23. Cui Y, Ren J, Chen G, Qian Y, Xie Y (2001) Chem Lett 30:236–237

    Article  Google Scholar 

  24. Pradhan N, Efrima S (2003) J Am Chem Soc 125:2050–2051

    Article  CAS  Google Scholar 

  25. Nair PS, Radhakrishnan T, Revaprasadu N, Kolawole G, O’Brien P (2002) J Mater Chem 12:2722–2725

    Article  CAS  Google Scholar 

  26. Abazovic ND, Comor MI, Mitric MN, Piscopiello E, Radetic T, Jankovic IA, Nedeljkovic JM (2012) J Nanoparticle Res 14:810–819

    Article  Google Scholar 

  27. Wang D, Zheng W, Hao C, Peng Q, Li Y (2008) Chem Commun 22:2556–2558

    Article  Google Scholar 

  28. Du W, Qian X, Yin J, Gong Q (2007) Chem Eur J 13:8840–8846

    Article  CAS  Google Scholar 

  29. Shay JL, Tell B, Schiavon LM, Kasper HM, Thiel F (1974) Phys Rev B: Solid State 9:1719–1723

    Article  CAS  Google Scholar 

  30. Kharkwal A, Jain K, Tyagi SB, Singh AK, Sharma SN, Kharkwal M (2014) Colloid Polym Sci. doi:10.1007/s00396-014-3326-5

    Google Scholar 

  31. Hong SP, Park HK, Oh JH, Yang H, Do YR (2012) J Mater Chem 22:18939–18949

    Article  CAS  Google Scholar 

  32. Torimoto T, Ogawa S, Adachi T, Kameyama T, Okazaki K, Shibayama T, Kudo A, Kuwabata S (2010) Chem Commun 46:2082–2084

    Article  CAS  Google Scholar 

  33. Xiang W, Xie C, Wang J, Zhong J, Liang X, Yang H, Luo L, Chen Z (2014) J Alloy Compd 588:114–121

    Article  CAS  Google Scholar 

  34. Li J, Pandey A, Werder DJ, Khanal BP, Pietryga JM, Klimov V (2011) J Am Chem Soc 133:1176–1179

    Article  CAS  Google Scholar 

  35. Hamanaka Y, Kuzuya T, Sofue T, Kino T, Ito K, Sumiyama K (2008) Chem Phys Lett 466:176–180

    Article  CAS  Google Scholar 

  36. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y (2008) Chem Mater 20:6434–6443

    Article  CAS  Google Scholar 

  37. Ogawa T, Kuzuya T, Hamanaka Y, Sumiyama K (2010) J Mater Chem 20:2226–2231

    Article  CAS  Google Scholar 

  38. Hamanaka Y, Ogawa T, Tsuzuki M, Ozawa K, Kuzuya T (2013) J Lumin 133:121–124

    Article  CAS  Google Scholar 

  39. Chang JY, Wang GQ, Cheng CY, Lin WX, Hsu JC (2012) J Mater Chem 22:10609–10618

    Article  CAS  Google Scholar 

  40. Nakamura H, Kato W, Uehara M, Nose K, Omata T, Matsuo SO, Miyazaki M, Maeda H (2006) Chem Mater 18:3330–3335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to AIRF facility JNU for TEM and one of the authors M. Kharkwal gratefully acknowledge the DST for the young scientist project (No. SR/FT/CS-89/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Kharkwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information Fig S1

(DOCX 40 kb)

Supporting Information Fig S2

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharkwal, A., Nitu, Jain, K. et al. Novel synthesis of selective phase-shape orientation of AgInS2 nanoparticles at low temperature. Colloid Polym Sci 293, 1953–1959 (2015). https://doi.org/10.1007/s00396-015-3574-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3574-z

Keywords

Navigation