Skip to main content
Log in

Preparation of titanium dioxide nano-particles modified with poly (methyl methacrylate) and its electrorheological characteristics in Isopar L

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, we reported a novel non-aqueous electrorheological (ER) fluid structured by TiO2 nano-particle-modified poly (methyl methacrylate) (PMMA/TiO2) dispersed in low viscosity Isopar L and its electrorheological behaviors were researched. Titanium dioxide nano-particles modified with poly (methyl methacrylate) were prepared via in situ polymerization and characterized by Fourier transform infrared, thermogravimetry, and transmission electron microscopy. The thickness of the cladding layer of nano-titanium dioxide surface was about 2∼3 nm, and the cladding rate was 1.437 %. A non-aqueous electrorheological (ER) fluid was constituted by PMMA/TiO2 particles dispersed in Isopar L. The influence of the electric field intensity, the mass concentration of the PMMA/TiO2, and the temperature on the electrorheological properties of ER fluid were discussed, respectively. The research results showed that the ER fluid performed a well rheological property when an external electric field was applied, and with the increase of the electric field intensity, from 0 to 4.5 kV/mm, the shear stress was increased from about 3 to 30 Pa. Meanwhile, the electrorheological effect and shear stress were also strengthened with temperature elevated, and the mass concentration of PMMA/TiO2 particles increased in dispersed system, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whittle M, Blullough WA (1992) The structure of smart fluids. Nature 358:373

    Article  Google Scholar 

  2. Bolck H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661–1677

    Article  Google Scholar 

  3. Halsay TC (1992) Electrorheological fluid. Science 258:761–766

    Article  Google Scholar 

  4. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137

    Article  CAS  Google Scholar 

  5. Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857

    Article  CAS  Google Scholar 

  6. Jiang J, Tian Y, Meng Y (2011) Structure parameter of electrorheological fluids in shear flow. Langmuir 27:5814–5823

    Article  CAS  Google Scholar 

  7. Hu Y (1998) Effects of an Inner Helmholtz layer on the dielectric dispersion of colloidal suspensions. Langmuir 14:271

    Article  CAS  Google Scholar 

  8. Zhang YL, Lu KQ, Rao GH (2002) Electrorheological fluid with an extraordinarily high yield stress. Appl Phys Lett 80:888–890

    Article  CAS  Google Scholar 

  9. Méheust Y, Parmar KPS, Schjelderupsen B (2011) The electrorheology of suspensions of Na-fluorohectorite clay in silicone oil. J Rheol 55:809–833

    Article  Google Scholar 

  10. Lu KQ, Wen WJ, Li CX (1995) Frequency dependence of electrorheological fluids in an ac electric field. Phys Rev E 52:6329–6332

    Article  CAS  Google Scholar 

  11. Block H, Kelly JP, Qin A (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14

    Article  CAS  Google Scholar 

  12. Kanu RC, Shaw MT (1998) Enhanced electrorheological fluids using anisotropic particles. J Rheol 42:657–670

    Article  CAS  Google Scholar 

  13. Tian Y, Meng Y, Wen S (2003) Particulate volume effect in suspensions with strong electrorheological response. Mater Lett 57:2807–2811

    Article  CAS  Google Scholar 

  14. Tan ZJ, Zou XW, Zhang WB (1999) Influences of the size and dielectric properties of particles on electrorheological response. Phys Rev E 59:3177–3181

    Article  CAS  Google Scholar 

  15. Sequeira V, Hill D (1998) Particle suspensions in liquid crystalline media: rheology, structure, and dynamic interactions. J Rheol 42:203–213

    Article  CAS  Google Scholar 

  16. Wu CW, Conrad H (1997) Dielectric and conduction effects in non-Ohmic electrorheological fluids. Phys Rev E 56:5789–5797

    Article  CAS  Google Scholar 

  17. Lan YC, Men SQ, Zhao XP (1998) The dependence of particle permittivity on the shear stress of electrorheological fluids. Appl Phys Lett 72:653–655

    Article  CAS  Google Scholar 

  18. Uejima H (1972) Dielectric mechanism and rheological properties of electro-fluids. Jpn J Appl Phys 11:319–326

    Article  CAS  Google Scholar 

  19. Conrad H, Li Y, Chen Y (1995) The temperature dependence of the electrorheology and related electrical properties of corn starch/corn oil suspensions. J Rheol 39:1041–1057

    Article  CAS  Google Scholar 

  20. Erol O, Tejada MR (2013) Effect of surface properties on the electrorheological response of hematite/silicone oil dispersions. J Colloid Interface Sci 392:75–82

    Article  CAS  Google Scholar 

  21. Zhao XP, Yin JB (2002) Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions. Chem Mater 14:2258–2263

    Article  CAS  Google Scholar 

  22. Cao JG, Shen M, Zhou LW (2006) Preparation and electrorheological properties of triethanolamine-modified TiO2. J Solid State Chem 179:1565–1568

    Article  CAS  Google Scholar 

  23. Xiang LQ, Zhao XP (2006) Preparation of montmorillonite/titania nanocomposite and enhanced electrorheological activity. J Colloid Interface Sci 1:131–140

    Article  Google Scholar 

  24. Haroun AA, Youssef AM (2011) Synthesis and electrical conductivity evaluation of novel hybrid poly (methyl methacrylate)/titanium dioxide nanowires. Synth Met 161:2063–2069

    Article  CAS  Google Scholar 

  25. Ivanova T, Harizanova A (2001) Characterization of TiO2-MnO oxides prepared by sol-gel method. Solid State Ionics 138:227–232

    Article  CAS  Google Scholar 

  26. Kor YK, See H (2010) The electrorheological response of elongated particles. Rheol Acta 49:741–756

    Article  CAS  Google Scholar 

  27. Klingenberg DJ, van Swol F, Zukoski CF (1989) Dynamic simulation of electrorheological suspensions. J Chem Phys 91:7888–7895

    Article  CAS  Google Scholar 

  28. Deinega YF, Vinogradov GV (1984) Electric fields in the rheology of disperse systems. Rheol Acta 23:636–651

    Article  CAS  Google Scholar 

  29. Kim YD, Kim JH (2008) Synthesis of polypyrrole-polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions. Colloid Polym Sci 286:631–637

    Article  CAS  Google Scholar 

  30. Klass DL, Martinek TW (1967) Electroviscous fluids. I. rheological properties. J Appl Phys 38:67–74

    Article  CAS  Google Scholar 

  31. Conrad H, Sprecher AF (1991) Characteristics and mechanisms of electrorheological fluids. J Stat Phys 64:1073–1091

    Article  Google Scholar 

  32. Cho MS, Cho YH, Choi HJ (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly (methyl methacrylate) microsphere: size effect. Langmuir 19:5875–5881

    Article  CAS  Google Scholar 

  33. Hao T, Kawai A, Ikazaki F (1998) Mechanism of the electrorheological effect: evidence from the conductive, dielectric, and surface characteristics of water-free electrorheological fluids. Langmuir 14:1256–1262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21102098) and the National High Technology Research and Development Program of China (863 Program, No. 2013AA032003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianggao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, X., Wang, S. et al. Preparation of titanium dioxide nano-particles modified with poly (methyl methacrylate) and its electrorheological characteristics in Isopar L. Colloid Polym Sci 293, 473–479 (2015). https://doi.org/10.1007/s00396-014-3434-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3434-2

Keywords

Navigation