Skip to main content

Advertisement

Log in

Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This article reports on the synthesis of a novel amphiphilic polyhedral oligomeric silsesquioxane (POSS) end-capped poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate) (POSS-P(MEO2MA-co-OEGMA)). These thermoresponsive organic–inorganic hybrid polymers exhibit critical phase transition temperature in water, which can be finely tuned by changing the feed ratio of OEGMA and MEO2MA. The lower critical solution temperature (LCST) of POSS-P(MEO2MA-co-OEGMA) increases from 31 to 59 °C with the increasing of OEGMA content. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies show that these polymers can self-assemble into spherical micelles with the thermosensitive block into the corona and the POSS forming the core, and larger aggregates are formed when the temperature values are above their LCSTs. These thermoresponsive polymers POSS-P(MEO2MA-co-OEGMA) with self-assembly behavior and tunable tempetature-responsive property have the potential applications in material science and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35(1–2):278–301

    Article  CAS  Google Scholar 

  2. Abulateefeh SR, Spain SG, Aylott JW, Chan WC, Garnett MC, Alexander C (2011) Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 11(12):1722–1734

    Article  CAS  Google Scholar 

  3. Liu R, Fraylich M, Saunders B (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287(6):627–643

    Article  CAS  Google Scholar 

  4. Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32(8–9):962–990

    Article  CAS  Google Scholar 

  5. Jones DS, Lorimer CP, McCoy CP, Gorman SP (2008) Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. J Biomed Mater Res B 85B(2):417–426

    Article  CAS  Google Scholar 

  6. Alarcon CH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285

    Article  CAS  Google Scholar 

  7. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45

    Article  CAS  Google Scholar 

  8. Azzaroni O (2012) Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. J Polym Sci A Polym Chem 50(16):3225–3258

    Article  CAS  Google Scholar 

  9. Rackaitis M, Strawhecker K, Manias E (2002) Water-soluble polymers with tunable temperature sensitivity: solution behavior. J Polym Sci B Polym Phys 40(19):2339–2342

    Article  CAS  Google Scholar 

  10. Li H, Yu B, Matsushima H, Hoyle CE, Lowe AB (2009) The thiol − isocyanate click reaction: facile and quantitative access to ω-end-functional poly(N, N-diethylacrylamide) synthesized by RAFT radical polymerization. Macromolecules 42(17):6537–6542

    Article  CAS  Google Scholar 

  11. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  12. Feng Q, Li F, Yan Q-Z, Zhu Y-C, Ge C-C (2010) Frontal polymerization synthesis and drug delivery behavior of thermo-responsive poly(N-isopropylacrylamide) hydrogel. Colloid Polym Sci 288(8):915–921

    Article  CAS  Google Scholar 

  13. Bae YH, Okano T, Kim SW (1990) Temperature dependence of swelling of crosslinked poly(N, N′-alkyl substituted acrylamides) in water. J Polym Sci B Polym Phys 28(6):923–936

    Article  CAS  Google Scholar 

  14. Aoshima S, Sugihara S (2000) Syntheses of stimuli-responsive block copolymers of vinyl ethers with side oxyethylene groups by living cationic polymerization and their thermosensitive physical gelation. J Polym Sci A Polym Chem 38(21):3962–3965

    Article  CAS  Google Scholar 

  15. Sugihara S, Kanaoka S, Aoshima S (2004) Stimuli-responsive ABC triblock copolymers by sequential living cationic copolymerization: multistage self-assemblies through micellization to open association. J Polym Sci A Polym Chem 42(11):2601–2611

    Article  CAS  Google Scholar 

  16. Lutz J-F, Hoth A (2005) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39(2):893–896

    Article  Google Scholar 

  17. Lutz J-F, Akdemir Ö, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAM) over? J Am Chem Soc 128(40):13046–13047

    Article  CAS  Google Scholar 

  18. Lessard BH, Ling EJY, Marić M (2012) Fluorescent, thermoresponsive oligo(ethylene glycol) methacrylate/9-(4-vinylbenzyl)-9H-carbazole copolymers designed with multiple LCSTs via nitroxide mediated controlled radical polymerization. Macromolecules 45(4):1879–1891

    Article  CAS  Google Scholar 

  19. Lutz J-F, Weichenhan K, Akdemir Ö, Hoth A (2007) About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 40(7):2503–2508

    Article  CAS  Google Scholar 

  20. Zengin A, Yildirim E, Caykara T (2013) RAFT-mediated synthesis and temperature-induced responsive properties of poly(2-(2-methoxyethoxy)ethyl methacrylate) brushes. J Polym Sci A Polym Chem 51(4):954–962

    Article  CAS  Google Scholar 

  21. Lutz J-F (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci A Polym Chem 46(11):3459–3470

    Article  CAS  Google Scholar 

  22. Das S, Samanta S, Chatterjee DP, Nandi AK (2013) Thermosensitive water-soluble poly(ethylene glycol)-based polythiophene graft copolymers. J Polym Sci A Polym Chem 51(6):1417–1427

    Article  CAS  Google Scholar 

  23. Jonas AM, Hu Z, Glinel K, Huck WTS (2008) Effect of nanoconfinement on the collapse transition of responsive polymer brushes. Nano Lett 8(11):3819–3824

    Article  CAS  Google Scholar 

  24. Lutz J-F, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7(11):3132–3138

    Article  CAS  Google Scholar 

  25. Lutz J-F (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23(19):2237–2243

    Article  CAS  Google Scholar 

  26. Li Y, Qian Y, Liu T, Zhang G, Liu S (2012) Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Biomacromolecules 13(11):3877–3886

    Article  CAS  Google Scholar 

  27. Yuan W, Zhang J, Zou H, Shen T, Ren J (2012) Amphiphilic ethyl cellulose brush polymers with mono and dual side chains: facile synthesis, self-assembly, and tunable temperature-pH responsivities. Polymer 53(4):956–966

    Article  CAS  Google Scholar 

  28. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8(1):21–29

    Article  CAS  Google Scholar 

  29. Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696

    Article  CAS  Google Scholar 

  30. Lichtenhan JD (1995) Polyhedral oligomeric silsesquioxanes: building blocks for silsesquioxane-based polymers and hybrid materials. Comments Inorg Chem 17(2):115–130

    Article  CAS  Google Scholar 

  31. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric ssilsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38(11):879–884

    Article  CAS  Google Scholar 

  32. Wang J-H, Altukhov O, Cheng C-C, Chang F-C, Kuo S-W (2013) Supramolecular structures of uracil-functionalized PEG with multi-diamidopyridine POSS through complementary hydrogen bonding interactions. Soft Matter 9(21):5196–5206

    Article  CAS  Google Scholar 

  33. Brown JF (1965) The polycondensation of phenylsilanetriol. J Am Chem Soc 87(19):4317–4324

    Article  CAS  Google Scholar 

  34. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22(5):1733–1746

    Article  CAS  Google Scholar 

  35. Wei K, Li L, Zheng S, Wang G, Liang Q (2014) Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior. Soft Matter 10(2):383–394

    Article  CAS  Google Scholar 

  36. Bianchi O, Barbosa LG, Machado G, Canto LB, Mauler RS, Oliveira RVB (2013) Reactive melt blending of PS-POSS hybrid nanocomposites. J Appl Polym Sci 128(1):811–827

    Article  CAS  Google Scholar 

  37. Pyun J, Matyjaszewski K (1999) The synthesis of hybrid polymers using atom transfer radical polymerization: homopolymers and block copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 33(1):217–220

    Article  Google Scholar 

  38. Wan C, Zhao F, Bao X, Kandasubramanian B, Duggan M (2009) Effect of POSS on crystalline transitions and physical properties of polyamide 12. J Polym Sci B Polym Phys 47(2):121–129

    Article  CAS  Google Scholar 

  39. Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46(25):11640–11647

    Article  CAS  Google Scholar 

  40. Liu H, Zheng S, Nie K (2005) Morphology and thermomechanical properties of organic–inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 38(12):5088–5097

    Article  CAS  Google Scholar 

  41. Chiu Y-C, Riang L, Chou IC, Ma C-CM, Chiang C-L, Yang C-C (2010) The POSS side chain epoxy nanocomposite: synthesis and thermal properties. J Polym Sci B Polym Phys 48(6):643–652

    Article  CAS  Google Scholar 

  42. Zhang W-B, Li Y, Li X, Dong X, Yu X, Wang C-L, Wesdemiotis C, Quirk RP, Cheng SZD (2011) Synthesis of shape amphiphiles based on functional polyhedral oligomeric silsesquioxane end-capped poly(l-Lactide) with diverse head surface chemistry. Macromolecules 44(8):2589–2596

    Article  CAS  Google Scholar 

  43. Li Y, Dong X-H, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk RP, Zhang W-B, Cheng SZD (2012) Synthesis of shape amphiphiles based on POSS tethered with two symmetric/asymmetric polymer tails via sequential “Grafting-from” and thiol–ene “Click” chemistry. ACS Macro Lett 1(7):834–839

    Article  CAS  Google Scholar 

  44. Wang Z, Li Y, Dong X-H, Yu X, Guo K, Su H, Yue K, Wesdemiotis C, Cheng SZD, Zhang W-B (2013) Giant gemini surfactants based on polystyrene-hydrophilic polyhedral oligomeric silsesquioxane shape amphiphiles: sequential "click" chemistry and solution self-assembly. Chem Sci 4(3):1345–1352

    Article  CAS  Google Scholar 

  45. Wang Z, Tan B, Hussain H, He C (2013) pH-responsive amphiphilic hybrid random-type copolymers of poly(acrylic acid) and poly(acrylate-POSS): synthesis by ATRP and self-assembly in aqueous solution. Colloid Polym Sci 291(8):1803–1815

    Article  CAS  Google Scholar 

  46. McCusker C, Carroll JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun 8:996–998

    Article  Google Scholar 

  47. Guo Y-L, Wang W, Otaigbe JU (2010) Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation. J Tissue Eng Regener Med 4(7):553–564

    Article  CAS  Google Scholar 

  48. Ma L, Geng H, Song J, Li J, Chen G, Li Q (2011) Hierarchical self-assembly of polyhedral oligomeric silsesquioxane end-capped stimuli-responsive polymer: from single micelle to complex micelle. J Polym Sci B Polym Phys 115(36):10586–10591

    CAS  Google Scholar 

  49. Zhang W, Liu L, Zhuang X, Li X, Bai J, Chen Y (2008) Synthesis and self-assembly of tadpole-shaped organic/inorganic hybrid poly(N-isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization. J Polym Sci A Polym Chem 46(21):7049–7061

    Article  CAS  Google Scholar 

  50. Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046

    Article  CAS  Google Scholar 

  51. Kim SK, Heo SJ, Koak JY, Lee JH, Lee YM, Chung DJ, Lee JI, Hong SD (2007) A biocompatibility study of a reinforced acrylic-based hybrid denture composite resin with polyhedraloligosilsesquioxane. J Oral Rehabil 34(5):389–395

    Article  CAS  Google Scholar 

  52. Loh XJ, Zhang Z-X, Mya KY, Y-l W, He CB, Li J (2010) Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes. J Mater Chem 20(47):10634–10642

    Article  CAS  Google Scholar 

  53. Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polym Rev 49(1):25–63

    Article  CAS  Google Scholar 

  54. Arotçaréna M, Heise B, Ishaya S, Laschewsky A (2002) Switching the inside and the outside of aggregates of water-soluble block copolymers with double rhermoresponsivity. J Am Chem Soc 124(14):3787–3793

    Article  Google Scholar 

  55. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99(7):2039–2044

    Article  CAS  Google Scholar 

  56. Baines FL, Armes SP, Billingham NC, Tuzar Z (1996) Micellization of poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate) copolymers in aqueous solution. Macromolecules 29(25):8151–8159

    Article  CAS  Google Scholar 

  57. Lee J-H, Jung S-W, Kim I-S, Jeong Y-I, Kim Y-H, Kim S-H (2003) Polymeric nanoparticle composed of fatty acids and poly(ethylene glycol) as a drug carrier. Int J Pharm 251(1–2):23–32

    Article  CAS  Google Scholar 

  58. Xiao G, Hu Z, Zeng G, Wang Y, Huang Y, Hong X, Xia B, Zhang G (2012) Effect of hydrophilic chain length on the aqueous solution behavior of block amphiphilic copolymers PMMA-b-PDMAEMA. J Appl Polym Sci 124(1):202–208

    Article  CAS  Google Scholar 

  59. Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B 16(1–4):3–27

    Article  CAS  Google Scholar 

  60. Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56(9):1273–1289

    Article  CAS  Google Scholar 

  61. Jonas AM, Glinel K, Oren R, Nysten B, Huck WTS (2007) Thermo-responsive polymer brushes with tunable collapse temperatures in the physiological range. Macromolecules 40(13):4403–4405

    Article  CAS  Google Scholar 

  62. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  63. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343

    Article  CAS  Google Scholar 

  64. Hussain H, Tan BH, Seah GL, Liu Y, He CB, Davis TP (2010) Micelle formation and gelation of (PEG − P(MA-POSS)) amphiphilic block copolymers via associative hydrophobic effects. Langmuir 26(14):11763–11773

    Article  CAS  Google Scholar 

  65. Jones M-C, Leroux J-C (1999) Polymeric micelles— a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial supports from the National Natural Science Foundation of China (No. 51273017) and Polymer Chemistry and Physics, Beijing Municipal Education Commission (BMEC, No. XK100100640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, Y., Ji, S. et al. Synthesis and self-assembly behavior of thermoresponsive poly(oligo(ethylene glycol) methyl ether methacrylate)-POSS with tunable lower critical solution temperature. Colloid Polym Sci 292, 2993–3001 (2014). https://doi.org/10.1007/s00396-014-3262-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3262-4

Keywords

Navigation