Skip to main content
Log in

Kinetics and particle size control in non-stirred precipitation polymerization of N-isopropylacrylamide

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel non-stirred precipitation polymerization for rapid small-scale synthesis of monodisperse temperature-sensitive poly(N-isopropylacrylamide) microgels is introduced. A practical framework for the final particle size control is established, and low-temperature synthesis is highlighted as an easy alternative for producing large particles in contrast to the temperature ramp method. Furthermore, in situ 3D-DLS method is used to determine the kinetic rate law of the precipitation polymerization of N-isopropylacrylamide. The power law exponents for the reaction are determined to be 0.97 ± 0.12 and 0.46 ± 0.01 for the monomer and the initiator concentration, respectively. In conjunction with other evidence, it is suggested that the reaction follows conventional radical polymerization kinetics and takes place in the continuous phase. Number concentration of particles in the batch is recognized to be the determining factor for the final particle volume of the microgels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pelton RH, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  2. Meyer S, Richtering W (2005) Influence of polymerization conditions on the structure of temperature-sensitive poly(N-isopropylacrylamide) microgels. Macromolecules 38:1517–1519

    Article  CAS  Google Scholar 

  3. Still T, Chen K, Alsayed AM et al (2013) Synthesis of micrometer-size poly(N-isopropylacrylamide) microgel particles with homogeneous crosslinker density and diameter control. J Colloid Interf Sci 405:96–102

    Article  CAS  Google Scholar 

  4. Meng Z, Smith MH, Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287:277–285

    Article  CAS  Google Scholar 

  5. Wiese S, Spiess AC, Richtering W (2012) Microgel-stabilized smart emulsions for biocatalysis. Angew Chem Int Ed 52:576–579

    Article  Google Scholar 

  6. Kiser PF, Wilson G, Needham D (2000) Lipid-coated microgels for the triggered release of doxorubicin. J Control Release 68:9–22

    Article  CAS  Google Scholar 

  7. Hervás Pérez JP, Sánchez-Paniagua López M, López-Cabarcos E, López-Ruiz B (2006) Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens Bioelectron 22:429–439

    Article  Google Scholar 

  8. Serpe MJ, Kim J, Lyon LA (2004) Colloidal hydrogel microlenses. Adv Mater 16:184–187

    Article  CAS  Google Scholar 

  9. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  10. Gao J, Frisken BJ (2005) Influence of secondary components on the synthesis of self-cross-linked N-isopropylacrylamide microgels. Langmuir 21:545–551

    Article  CAS  Google Scholar 

  11. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf 85:1–33

    Article  CAS  Google Scholar 

  12. Pich A, Richtering W (2010) Microgels by precipitation polymerization: synthesis, characterization and functionalization. Adv Polym Sci 234:1–37

    Article  CAS  Google Scholar 

  13. Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex. Langmuir 5:816–818

    Article  CAS  Google Scholar 

  14. McPhee W, Tam KC, Pelton R (1993) Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interf Sci 156:24–30

    Article  CAS  Google Scholar 

  15. Tam KC, Ragaram S, Pelton RH (1994) Interaction of surfactants with poly(N-isopropylacrylamide) microgel latexes. Langmuir 10:418–422

    Article  CAS  Google Scholar 

  16. Wu X, Pelton RH, Hamielec AE et al (1994) The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 272:467–477

    Article  CAS  Google Scholar 

  17. Acciaro R, Gilányi T, Varga I (2011) Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution. Langmuir 27:7917–7925

    Article  CAS  Google Scholar 

  18. Duracher D, Elaissari A, Pichot C (1999) Preparation of poly(N-isopropylmethacrylamide) latexes Kinetic studies and characterization. J Polym Sci A1(37):1823–1837

  19. Flory PJ (1953) Principles of polymer chemistry. Cornell University, New York

    Google Scholar 

  20. Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16:592–599

    Article  CAS  Google Scholar 

  21. Thomas WM, Pellon JJ (1954) Kinetics of acrylonitrile polymerization in bulk. J Polym Sci 13:329–353

    Article  CAS  Google Scholar 

  22. Ueda M, Shouji S, Ogata T et al (1984) Radical-initiated homo-and copolymerization of α-fluoroacrylamide “living” radicals in a homogeneous system. Macromolecules 17:2800–2804

    Article  CAS  Google Scholar 

  23. Sato T, Miyamoto J, Otsu T (1984) Long-lived polymer radicals. VI. Polymerization of N-methylmethacrylamide with formation of living propagation radicals. J Polym Sci A1 22(12):3921–3932

    CAS  Google Scholar 

  24. Pelton RH (2010) Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J Colloid Interf Sci 348:673–674

    Article  CAS  Google Scholar 

  25. Stieger M, Pedersen JS, Richtering W, Lindner P (2004) Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J Chem Phys 120:6197–6206

    Article  CAS  Google Scholar 

  26. Burchard W, Richtering W (1989) Dynamic light scattering from polymer solutions. Prog Coll Pol Sci S 80:151–163

  27. Lindner P, Zemb T (2002) Neutrons, X-rays and light: scattering methods applied to soft condensed matter. North Holland Delta Series, Amsterdam

    Google Scholar 

  28. Hansen J, Maier D, Honerkamp J et al (1999) Size distributions out of static light scattering: inclusion of distortions from the experimental setup, e.g., a SOFICA-type goniometer. J Colloid Interf Sci 215:72–84

    Article  CAS  Google Scholar 

  29. Pusey PN (1991) Colloidal suspensions. In: Hansen JP, Levesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. Elsevier, Amsterdam, pp 763–942

  30. Evans DF, Wennerström H (1999) The colloidal domain: where physics, chemistry, biology, and technology meet, 2nd edn. Wiley, New Jersey

  31. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

  32. Burchard W, Schmidt M, Stockmayer WH (1980) Information on polydispersity and branching from combined quasi-elastic and intergrated scattering. Macromolecules 13:1265–1272

    Article  CAS  Google Scholar 

  33. Burchard W, Ross-Murphy S (1994) Physical Techniques for the Study of Food Biopolymers. Edited by SB Ross Murphy. Blackie Academic, Glasgow

    Google Scholar 

  34. Senff H, Richtering W (2000) Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840

    Article  CAS  Google Scholar 

  35. Schätzel K (1991) Suppression of multiple scattering by photon cross-correlation techniques. J Mod Optic 38:1849–1865

    Article  Google Scholar 

  36. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey

  37. Privman V, Goia D, Park J, Matijevi cacute E (1999) Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interf Sci 213:36–45

    Article  CAS  Google Scholar 

  38. Feeney PJ, Napper DH, Gilbert RG (1984) Coagulative nucleation and particle size distributions in emulsion polymerization. Macromolecules 17:2520–2529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professors Andrij Pich and Alexander Mitsos for their useful discussions. We acknowledge the funding from Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 985.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. J. Virtanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virtanen, O.L.J., Richtering, W. Kinetics and particle size control in non-stirred precipitation polymerization of N-isopropylacrylamide. Colloid Polym Sci 292, 1743–1756 (2014). https://doi.org/10.1007/s00396-014-3208-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3208-x

Keywords

Navigation