Skip to main content
Log in

Synthesis, characterization, and solution behavior of well-defined double hydrophilic linear amphiphilic poly (N-isopropylacrylamide)-b-poly (ε-caprolactone)-b-poly (N-isopropylacrylamide) triblock copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Well-defined linear dihydrophilic amphiphilic ABA-type triblock copolymers of ε-caprolactone (CL) and N-isopropylacrylamide (NIPAAm) have successfully been synthesized with a high yield by combining the ring opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization methods. The resulted block copolymer shows the formation of micelles in water as supported by light scattering. The critical micelle concentration (cmc) value of the micelle increases with the increase in the chain length of the poly (N-isopropylacrylamide) (PNIPAAm) block. Cloud point of the block copolymers decreases with the decrease in the PNIPAAm chain length. The TGA analysis shows a one-step degradation and a lower thermal stability of the triblock copolymer than the PNIPAAm. The DSC analysis of the triblock copolymer shows the lowering of glass transition temperature (T g), and melting temperature (T m) peaks possibly due to the partial miscibility of the poly (ε-caprolactone) (PCL) block with the amorphous PNIPAAm block through the interaction of ester groups of PCL with the amide groups of PNIPAAm. The XRD pattern of the triblock copolymer shows a broad peak due to the suppression of the crystallization of PCL block owing to the mixing of PNIPAAm block with the PCL block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ouchi M, Terashima T, Sawamoto M (2009) Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050

    Article  CAS  Google Scholar 

  2. Yamago S (2009) Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain transfer agents. Chem Rev 109:5051–5068

    Article  CAS  Google Scholar 

  3. Almgren M, Brown W, Hvidt S (1995) Self-aggregation and phase behavior of poly (ethylene oxide )-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution. Colloid Polym Sci 273:2–15

    Article  CAS  Google Scholar 

  4. Alexandridis P, Holzwarth JF (1997) Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir 13:6074–6082

    Article  CAS  Google Scholar 

  5. Stephan F, Markus A (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217

    Article  Google Scholar 

  6. Alexandridis P, Nivaggioli T, Hatton TA (1995) Temperature effects on structural properties of Pluronic P104 and F108 PEO-PPO-PEO block copolymer solutions. Langmuir 11:1468–1476

    Article  CAS  Google Scholar 

  7. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729

    Article  CAS  Google Scholar 

  8. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389

    Article  CAS  Google Scholar 

  9. Chen H, Wu X, Duan H, Wang YA, Wang L, Zhang M, Mao H (2009) Biocompatible polysiloxane-containing diblock copolymer PEO-b-PgammaMPS for coating magnetic nanoparticles. ACS Appl Mater Interfaces 10:2134–2140

    Article  Google Scholar 

  10. Shin W-J, Basarir F, Yoon T-H, Lee J-S (2009) Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly (2-vinylpyridine) block copolymer nanoparticles. Langmuir 25:3344

    Article  CAS  Google Scholar 

  11. Callewaert M, Gohy JF, Dupont-Gillain Ch C, Boulang-Petermann L, Rouxhet PG (2005) Surface morphology and wetting properties of surfaces coated with an amphiphilic diblock copolymer. Surf Sci 575:125–135

    Article  CAS  Google Scholar 

  12. Perelstein OE, Ivanov VA, Moller M, Potemkin II (2010) Designed AB copolymers as efficient stabilizers of colloidal particles. Macromolecules 43:5442–5449

    Article  CAS  Google Scholar 

  13. Bulychev NA, Arutunov IA, Zubov VP, Verdonck B, Zhang T, Goethals EJ, Du Prez FE (2004) Block copolymers of vinyl ethers as thermo-responsive colloidal stabilizers of organic pigments in aqueous media. Macromol Chem Phys 205:24–63

    Article  Google Scholar 

  14. Sakai T, Alexandridis P (2005) Spontaneous formation of gold nanoparticles in poly (ethylene oxide)-poly (propylene oxide) solutions: solvent quality and polymer structure effects. Langmuir 21:8019–8025

    Article  CAS  Google Scholar 

  15. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  16. Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci, Chem A2(8):1441–1455

    Article  Google Scholar 

  17. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly (N-isopropylacrylamide) and poly (N-isopropylmethacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  18. Tong Z, Zeng F, Zheng X, Sato T (1999) Inverse molecular weight dependence of cloud points for aqueous poly (N-isopropylacrylamide) solutions. Macromolecules 32:4488–4490

    Article  CAS  Google Scholar 

  19. de Azevedo RG, Rebelo LPN, Ramos AM, Szydlowski J, de Sousa HC, Klein J (2001) Phase behaviour of (polyacrylamides + water) solutions: concentration, pressure and isotope effects. Fluid Phase Equilib 185:189–198

    Article  Google Scholar 

  20. Ray B, Isobe Y, Morioka K, Habaue S, Okamoto Y, Kamigaito M, Swamoto M (2003) Synthesis of isotactic poly (N-isopropylacrylamide) by RAFT polymerization in the presence of Lewis acid. Macromolecules 36:543–545

    Article  CAS  Google Scholar 

  21. Ray B, Isobe Y, Matsumoto K, Habaue S, Okamoto Y, Kamigaito M, Swamoto M (2004) RAFT polymerization of N-Isopropylacrylamide in the absence and presence of Y (OTf)3: simultaneous control of molecular weight and tacticity. Macromolecules 37:1702–1710

    Article  CAS  Google Scholar 

  22. Ray B, Okamoto Y, Kamigaito M, Swamoto M, Seno K, Kanoka S, Aoshima S (2005) Effect of tacticity of poly (N-isopropylacrylamide) on the phase separation temperature of its aqueous solutions. Polym J 37:234–237

    Article  CAS  Google Scholar 

  23. Biswas CS, Patel VK, Vishwakarma NK, Mishra AK, Saha S, Ray B (2010) Synthesis and characterization of stereocontrolled poly(N-isopropylacrylamide) hydrogel prepared in the presence of Y (OTf)3 Lewis acid. Langmuir 26:6775–6782

    Article  CAS  Google Scholar 

  24. Biswas CS, Patel VK, Vishwakarma NK, Tiwari VK, Maiti P, Kamigaito M, Okamoto Y, Ray B (2011) Effects of tacticity and molecular weight of poly (N-isopropylacrylamide) on its glass transition temperature. Macromolecules 44:5822–5824

    Article  CAS  Google Scholar 

  25. Choi C, Chae SY, Nah J-W (2006) Thermosensitive poly (N-isopropylacrylamide)-b-poly (ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer 47:4571–4580

    Article  CAS  Google Scholar 

  26. Chang C, Wei H, Quan C-Y, Li Y-Y, Liu J, Wang Z-C, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J of Polymer Science: Part A: Polymer Chemistry 46:3048–3057

    Article  CAS  Google Scholar 

  27. Chen W-Q, Wei H, Li S-L, Feng J, Nie J, Zhang X-Z, Zhuo R-X (2008) Fabrication of star-shaped, thermo-sensitive poly (N-isopropylacrylamide)–cholic acid–poly (3-caprolactone) copolymers and their self-assembled micelles as drug carriers. Polymer 49:3965–3972

    Article  CAS  Google Scholar 

  28. Xu FJ, Li J, Yuan SJ, Zhang ZX, Kang ET, Neoh KG (2008) Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly (N-isopropylacrylamide) prepared by atom transfer radical polymerization. Biomacromolecules 9:331–339

    Article  CAS  Google Scholar 

  29. Li L, Yang X, Liu F, Shang J, Yan G, Li W (2009) Thermosensitive poly (N-isopropylacrylamide)-b-polycaprolact one-b-poly (N-isopropylacrylamide) triblock copolymers prepared via atom transfer radical polymerization for control of cell adhesion and detachment. J Chil Chem Soc 54:4

    Google Scholar 

  30. Wan X, Liu T, Liu S (2011) Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers. Biomacromolecules 12:1146–1154

    Article  CAS  Google Scholar 

  31. Patel VK, Mishra AK, Viswakarma NK, Biswas CS, Ray B (2010) (S)-2-(ethyl propionate)-(O-ethyl xanthate) and (S)-2-(ethyl isobutyrate)-(O-ethyl xanthate)-mediated RAFT polymerization of N-vinylpyrrolidone. Polym Bull 65:97–110

    Article  CAS  Google Scholar 

  32. Mishra AK, Patel VK, Viswakarma NK, Biswas CS, Raula M, Misra A, Mandal TK, Ray B (2011) Synthesis of well-defined amphiphilic poly (ε-caprolactone)-b-poly (N-vinylpyrrolidone) block copolymers via the combination of ROP and xanthate-mediated raft polymerization. Macromolecules 44:2465–2473

    Article  CAS  Google Scholar 

  33. Paira TK, Banerjee S, Raula M, Kotal A, Si S, Mandal TK (2010) Peptide-polymer bioconjugates via atom transfer radical polymerization and their solution aggregation into hybrid micro/nanospheres for dye uptake. Macromolecules 43:4050–4061

    Article  CAS  Google Scholar 

  34. Ramesh K, Mishra AK, Patel VK, Viswakarma NK, Biswas CS, Paira TK, Mandal TK, Maiti P, Misra N, Ray B (2012) Synthesis of well-defined amphiphilic poly (d, l-Lactide)-b-poly (N-vinylpyrrolidone) block copolymers using ROP and xanthate-mediated RAFT polymerization. Polymer 53:5743–5753

    Article  CAS  Google Scholar 

  35. Štěpánek P, (1993) In dynamic light scattering—the method and some applications; Brown, W., Ed.; Clarendon: Boston; pp177-241.

  36. Chu B (1991) Laser light scattering: basic principles and practices; 2nd ed. Academic, New York, p 1361

    Google Scholar 

  37. Cheng J, Ding J-X, Wang Y-C, Wang J (2008) Synthesis and characterization of star-shaped block copolymer of poly-(ε-caprolactone) and poly(ethyl ethylene phosphate) as drug carrier. Polymer 49:4784–4790

    Article  CAS  Google Scholar 

  38. Sheng YJ, Wang TY, Chen WM, Tsao HK (2007) A-B diblock copolymer micelles: effects of soluble-block length and component compatibility. J Phys Chem B 111:10938–10945

    Article  CAS  Google Scholar 

  39. Forster S, Zisens M, Wenz E, Antonietti M (1996) Micellization of strongly segregated block copolymers. J Chem Phys B 104:9956–9970

    Article  Google Scholar 

  40. Chung TW, Cho KY, Lee HC, Nah JW, Yeo JH, Akaike T, Cho CS (2004) Novel micelle-forming block copolymer composed of poly (ε-caprolactone) and poly (vinyl pyrrolidone). Polymer 45:1591–1597

    Article  CAS  Google Scholar 

  41. Persenaire O, Alexandre M, Degee P, Dubois P (2001) Mechanisms and kinetics of thermal degradation of poly (ε-caprolactone). Biomacromolecules 2:288–294

    Article  CAS  Google Scholar 

  42. Kim SJ, Park SJ, Kim IY, Chung TD, Kim HC, Kim SI (2003) Thermal characteristics of interpenetrating polymer networks composed of poly (vinyl alcohol) and poly (N-isopropylacrylamide). J Appl Polym Sci 90:881–885

    Article  CAS  Google Scholar 

  43. Chatani Y, Okita Y, Tadokoro H, Yamashita Y (1970) Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym J 1:555–562

    Article  CAS  Google Scholar 

  44. Nojima S, Ohguma Y, Kadena K-I, Takashi I, Iwasaki Y, Yamaguchi K (2010) Crystal orientation of poly (ε-caprolactone) Homopolymers confined in cylindrical nanodomains. Macromolecules 43:3916–3923

    Article  CAS  Google Scholar 

  45. Lin I-H, Cheng CC, Yen YC, Chang FC (2010) Synthesis and assembly behavior of heteronucleobase-functionalized poly(ε-caprolactone). Macromolecules 43:1245–1252

    Article  CAS  Google Scholar 

  46. Martins-Franchetti SM, Egerton TA, White JR (2010) Morphological changes in poly(caprolactone)/poly (vinyl chloride) blends caused by biodegradation. J Polym Environ 18:79–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Department of Science and Technology, Government of India, through grant no. SR/S1/PC-25/2006. A.K.M., N.K.V., and V.K.P. acknowledges CSIR, Government of India for Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, A.K., Vishwakarma, N.K., Patel, V.K. et al. Synthesis, characterization, and solution behavior of well-defined double hydrophilic linear amphiphilic poly (N-isopropylacrylamide)-b-poly (ε-caprolactone)-b-poly (N-isopropylacrylamide) triblock copolymers. Colloid Polym Sci 292, 1405–1418 (2014). https://doi.org/10.1007/s00396-014-3201-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3201-4

Keywords

Navigation