Skip to main content

Advertisement

Log in

Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The stellate ganglia play an important role in cardiac remodeling after myocardial infarction (MI). This study aimed to investigate whether adiponectin (APN), an adipokine mainly secreted by adipose tissue, could modulate the left stellate ganglion (LSG) and exert cardioprotective effects through the sympathetic nervous system (SNS) in a canine model of MI. APN microinjection and APN overexpression with recombinant adeno-associated virus vector in the LSG were performed in acute and chronic MI models, respectively. The results showed that acute APN microinjection decreased LSG function and neural activity, and suppressed ischemia-induced ventricular arrhythmia. Chronic MI led to a decrease in the effective refractory period and action potential duration at 90% and deterioration in echocardiography performance, all of which was blunted by APN overexpression. Moreover, APN gene transfer resulted in favorable heart rate variability alteration, and decreased cardiac SNS activity, serum noradrenaline and neuropeptide Y, which were augmented after MI. APN overexpression also decreased the expression of nerve growth factor and growth associated protein 43 in the LSG and peri-infarct myocardium, respectively. Furthermore, RNA sequencing of LSG indicated that 4-week MI up-regulated the mRNA levels of macrophage/microglia activation marker Iba1, chemokine ligands (CXCL10, CCL20), chemokine receptor CCR5 and pro-inflammatory cytokine IL6, and downregulated IL1RN and IL10 mRNA, which were reversed by APN overexpression. Our results reveal that APN inhibits cardiac sympathetic remodeling and mitigates cardiac remodeling after MI. APN-mediated gene therapy may provide a potential therapeutic strategy for the treatment of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets are available on reasonable request to the corresponding author.

References

  1. Ajijola OA, Hoover DB, Simerly TM, Brown TC, Yanagawa J, Biniwale RM, Lee JM, Sadeghi A, Khanlou N, Ardell JL, Shivkumar K (2017) Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI insight. https://doi.org/10.1172/jci.insight.94715

    Article  Google Scholar 

  2. Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K (2010) Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation 121:2255–2262. https://doi.org/10.1161/CIRCULATIONAHA.109.929703

    Article  Google Scholar 

  3. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sanchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20:1172–1179. https://doi.org/10.1038/nn.4593

    Article  CAS  Google Scholar 

  4. Cui X, Jing J, Wu R, Cao Q, Li F, Li K, Wang S, Yu L, Schwartz G, Shi H, Xue B, Shi H (2021) Adipose tissue-derived neurotrophic factor 3 regulates sympathetic innervation and thermogenesis in adipose tissue. Nat Commun 12:5362. https://doi.org/10.1038/s41467-02125766-2

    Article  CAS  Google Scholar 

  5. D’Alonzo AJ, Hess TA, Darbenzio RB, Sewter JC, Conder ML, McCullough JR (1994) Effects of cromakalim or pinacidil on pacing- and ischemia-induced ventricular fibrillation in the anesthetized pig. Basic Res Cardiol 89:163–176. https://doi.org/10.1007/BF00788735

    Article  CAS  Google Scholar 

  6. Dahlstrom M, Madjid N, Nordvall G, Halldin MM, Vazquez-Juarez E, Lindskog M, Sandin J, Winblad B, Eriksdotter M, Forsell P (2021) Identification of novel positive allosteric modulators of neurotrophin receptors for the treatment of cognitive dysfunction. Cells 10(8):1871. https://doi.org/10.3390/cells10081871

    Article  CAS  Google Scholar 

  7. Davis H, Herring N, Paterson DJ (2020) Downregulation of M current is coupled to membrane excitability in sympathetic neurons before the onset of hypertension. Hypertension 76:1915–1923. https://doi.org/10.1161/HYPERTENSIONAHA.120.15922

    Article  CAS  Google Scholar 

  8. Diaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R (2020) Neuroinflammation in heart failure: new insights for an old disease. J Physiol 598:33–59. https://doi.org/10.1113/JP278864

    Article  CAS  Google Scholar 

  9. Dusi V, De Ferrari GM, Schwartz PJ (2020) There are 100 ways by which the sympathetic nervous system can trigger life-threatening arrhythmias. Eur Heart J 41:2180–2182. https://doi.org/10.1093/eurheartj/ehz950

    Article  Google Scholar 

  10. Garan H, Fallon JT, Ruskin JN (1980) Sustained ventricular tachycardia in recent canine myocardial infarction. Circulation 62:980–987. https://doi.org/10.1161/01.cir.62.5.980

    Article  CAS  Google Scholar 

  11. Goldberger JJ, Arora R, Buckley U, Shivkumar K (2019) Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol 73:1189–1206. https://doi.org/10.1016/j.jacc.2018.12.064

    Article  Google Scholar 

  12. Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS, Chen LS (2012) Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol 59:954–961. https://doi.org/10.1016/j.jacc.2011.11.030

    Article  Google Scholar 

  13. Hansen CS, Vistisen D, Jorgensen ME, Witte DR, Brunner EJ, Tabak AG, Kivimaki M, Roden M, Malik M, Herder C (2017) Adiponectin, biomarkers of inflammation and changes in cardiac autonomic function: Whitehall II study. Cardiovasc Diabetol 16:153. https://doi.org/10.1186/s12933-017-0634-3

    Article  Google Scholar 

  14. Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154. https://doi.org/10.1016/j.brainres.2006.09.054

    Article  CAS  Google Scholar 

  15. Herring N, Kalla M, Paterson DJ (2019) The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 16:707–726. https://doi.org/10.1038/s41569-019-0221-2

    Article  Google Scholar 

  16. Herring N, Tapoulal N, Kalla M, Ye X, Borysova L, Lee R, Dall’Armellina E, Stanley C, Ascione R, Lu CJ, Banning AP, Choudhury RP, Neubauer S, Dora K, Kharbanda RK, Channon KM, Oxford Acute Myocardial Infarction S (2019) Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction. Eur Heart J 40:1920–1929. https://doi.org/10.1093/eurheartj/ehz115

    Article  CAS  Google Scholar 

  17. Heusch G, Deussen A, Thamer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J Auton Nerv Syst 13:311–326. https://doi.org/10.1016/01651838(85)90020-7

    Article  CAS  Google Scholar 

  18. Hinterdobler J, Schott S, Jin H, Meesmann A, Steinsiek AL, Zimmermann AS, Wobst J, Muller P, Mauersberger C, Vilne B, Baecklund A, Chen CS, Moggio A, Braster Q, Molitor M, Krane M, Kempf WE, Ladwig KH, Hristov M, Hulsmans M, Hilgendorf I, Weber C, Wenzel P, Scheiermann C, Maegdefessel L, Soehnlein O, Libby P, Nahrendorf M, Schunkert H, Kessler T, Sager HB (2021) Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. Eur Heart J 42:4077–4088. https://doi.org/10.1093/eurheartj/ehab371

    Article  CAS  Google Scholar 

  19. Hoang JD, Salavatian S, Yamaguchi N, Swid MA, David H, Vaseghi M (2020) Cardiac sympathetic activation circumvents high-dose beta blocker therapy in part through release of neuropeptide Y. JCI insight. https://doi.org/10.1172/jci.insight.135519

    Article  Google Scholar 

  20. Hoyda TD, Ferguson AV (2010) Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents. Endocrinology 151:3154–3162. https://doi.org/10.1210/en.2009-1390

    Article  CAS  Google Scholar 

  21. Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, Abduljawad N, Kliper E, Korczyn AD, Thareja NS, Kesner EL, Zhou M, Huang S, Silva TK, Katz N, Bornstein NM, Silva AJ, Shohami E, Carmichael ST (2019) CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(1143–1157):e1113. https://doi.org/10.1016/j.cell.2019.01.044

    Article  CAS  Google Scholar 

  22. Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA, Guo XE, Mann JJ, Karsenty G (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915. https://doi.org/10.1016/j.cmet.2013.04.009

    Article  CAS  Google Scholar 

  23. Kalla M, Hao G, Tapoulal N, Tomek J, Liu K, Woodward L, Oxford Acute Myocardial Infarction S, Dall’Armellina E, Banning AP, Choudhury RP, Neubauer S, Kharbanda RK, Channon KM, Ajijola OA, Shivkumar K, Paterson DJ, Herring N (2020) The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. Eur Heart J 41:2168–2179. https://doi.org/10.1093/eurheartj/ehz852

    Article  CAS  Google Scholar 

  24. Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. https://doi.org/10.1093/cvr/cvp160

    Article  CAS  Google Scholar 

  25. Kojima S, Funahashi T, Sakamoto T, Miyamoto S, Soejima H, Hokamaki J, Kajiwara I, Sugiyama S, Yoshimura M, Fujimoto K, Miyao Y, Suefuji H, Kitagawa A, Ouchi N, Kihara S, Matsuzawa Y, Ogawa H (2003) The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 89:667. https://doi.org/10.1136/heart.89.6.667

    Article  CAS  Google Scholar 

  26. Lai Y, Zhou X, Guo F, Jin X, Meng G, Zhou L, Chen H, Liu Z, Yu L, Jiang H (2021) Noninvasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab209

    Article  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

    Article  Google Scholar 

  28. Lu CJ, Hao G, Nikiforova N, Larsen HE, Liu K, Crabtree MJ, Li D, Herring N, Paterson DJ (2015) CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension 65:1288–1297. https://doi.org/10.1161/HYPERTENSIONAHA.115.05290

    Article  CAS  Google Scholar 

  29. Lyu J, Wang M, Kang X, Xu H, Cao Z, Yu T, Huang K, Wu J, Wei X, Lei Q (2020) Macrophage-mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res Cardiol 115:56. https://doi.org/10.1007/s00395020-0813-3

    Article  CAS  Google Scholar 

  30. Miao W, Jiang L, Xu F, Lyu J, Jiang X, He M, Liu Y, Yang T, Leak RK, Stetler RA, Chen J, Hu X (2021) Adiponectin ameliorates hypoperfusive cognitive deficits by boosting a neuroprotective microglial response. Prog Neurobiol 205:102125. https://doi.org/10.1016/j.pneurobio.2021.102125

    Article  CAS  Google Scholar 

  31. Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, Amaonye M, Beach A, Berth K, Biswas S, Braun MC, Chen HM, Colace TV, Ganey JD, Gangopadhyay SA, Garrity R, Kasiewicz LN, Lavoie J, Madsen JA, Matsumoto Y, Mazzola AM, Nasrullah YS, Nneji J, Ren H, Sanjeev A, Shay M, Stahley MR, Fan SHY, Tam YK, Gaudelli NM, Ciaramella G, Stolz LE, Malyala P, Cheng CJ, Rajeev KG, Rohde E, Bellinger AM, Kathiresan S (2021) In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593:429–434. https://doi.org/10.1038/s41586-02103534-y

    Article  CAS  Google Scholar 

  32. Ng RC, Jian M, Ma OK, Bunting M, Kwan JS, Zhou GJ, Senthilkumar K, Iyaswamy A, Chan PK, Li M, Leung KM, Kumar Durairajan SS, Lam KS, Chu LW, Festenstein R, Chung SK, Chan KH (2021) Chronic oral administration of adipoRon reverses cognitive impairments and ameliorates neuropathology in an Alzheimer’s disease mouse model. Mol Psychiatry 26:5669–5689. https://doi.org/10.1038/s41380-020-0701-0

    Article  CAS  Google Scholar 

  33. Okamoto LE, Raj SR, Gamboa A, Shibao CA, Arnold AC, Garland EM, Black BK, Farley G, Diedrich A, Biaggioni I (2015) Sympathetic activation is associated with increased IL-6, but not CRP in the absence of obesity: lessons from postural tachycardia syndrome and obesity. Am J Physiol Heart Circ Physiol 309:H2098-2107. https://doi.org/10.1152/ajpheart.00409.2015

    Article  CAS  Google Scholar 

  34. Scheja L, Heeren J (2019) The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 15:507–524. https://doi.org/10.1038/s41574-0190230-6

    Article  CAS  Google Scholar 

  35. Schwartz PJ, Ackerman MJ (2022) Cardiac sympathetic denervation in the prevention of genetically mediated life-threatening ventricular arrhythmias. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac134

    Article  Google Scholar 

  36. Shah R, Assis F, Alugubelli N, Okada DR, Cardoso R, Shivkumar K, Tandri H (2019) Cardiac sympathetic denervation for refractory ventricular arrhythmias in patients with structural heart disease: a systematic review. Heart Rhythm 16:1499–1505. https://doi.org/10.1016/j.hrthm.2019.06.018

    Article  Google Scholar 

  37. Sharp TE 3rd, Polhemus DJ, Li Z, Spaletra P, Jenkins JS, Reilly JP, White CJ, Kapusta DR, Lefer DJ, Goodchild TT (2018) Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J Am Coll Cardiol 72:2609–2621. https://doi.org/10.1016/j.jacc.2018.08.2186

    Article  Google Scholar 

  38. Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH (1998) Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart 80:156–162. https://doi.org/10.1136/hrt.80.2.156

    Article  CAS  Google Scholar 

  39. Sulimai N, Lominadze D (2020) Fibrinogen and neuroinflammation during traumatic brain injury. Mol Neurobiol 57:4692–4703. https://doi.org/10.1007/s12035-020-02012-2

    Article  CAS  Google Scholar 

  40. Swissa M, Zhou S, Gonzalez-Gomez I, Chang CM, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43:858–864. https://doi.org/10.1016/j.jacc.2003.07.053

    Article  Google Scholar 

  41. Tanida M, Shen J, Horii Y, Matsuda M, Kihara S, Funahashi T, Shimomura I, Sawai H, Fukuda Y, Matsuzawa Y, Nagai K (2007) Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats. Exp Biol Med (Maywood) 232:390–397

    CAS  Google Scholar 

  42. Tentolouris N, Doulgerakis D, Moyssakis I, Kyriaki D, Makrilakis K, Kosmadakis G, Stamatiadis D, Katsilambros N, Stathakis C (2004) Plasma adiponectin concentrations in patients with chronic renal failure: relationship with metabolic risk factors and ischemic heart disease. Horm Metab Res 36:721–727. https://doi.org/10.1055/s-2004-826022

    Article  CAS  Google Scholar 

  43. Tse R, Garland J, McCarthy S, Ondruschka B, Bardsley EN, Wong CX, Stables S, Paton JFR (2022) Sudden cardiac deaths have higher proportion of left stellate ganglionitis. Forensic Sci Med Pathol. https://doi.org/10.1007/s12024-022-00466-5

    Article  Google Scholar 

  44. Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, Shah R, Sorg JM, Gima J, Mandal K, Saenz Morales LC, Lokhandwala Y, Shivkumar K (2017) Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol 69:3070–3080. https://doi.org/10.1016/j.jacc.2017.04.035

    Article  Google Scholar 

  45. Wang M, Li S, Zhou X, Huang B, Zhou L, Li X, Meng G, Yuan S, Wang Y, Wang Z, Wang S, Yu L, Jiang H (2017) Increased inflammation promotes ventricular arrhythmia through aggravating left stellate ganglion remodeling in a canine ischemia model. Int J Cardiol 248:286–293. https://doi.org/10.1016/j.ijcard.2017.08.011

    Article  Google Scholar 

  46. Wang S, Zhou X, Huang B, Wang Z, Liao K, Saren G, Lu Z, Chen M, Yu L, Jiang H (2015) Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm 12:1628–1635. https://doi.org/10.1016/j.hrthm.2015.03.023

    Article  Google Scholar 

  47. Wang Z, Yu L, Wang S, Huang B, Liao K, Saren G, Tan T, Jiang H (2014) Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ Heart Fail 7:1014–1021. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001564

    Article  Google Scholar 

  48. Ye TY, Lai YQ, Wang ZY, Zhang XG, Meng GN, Zhou LP, Zhang YF, Zhou Z, Deng JL, Wang M, Wang YH, Zhang QQ, Zhou XY, Yu LL, Jiang H, Xiao XH (2019) Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation. Adv Funct Mater. https://doi.org/10.1002/adfm.201902128

    Article  Google Scholar 

  49. Yu L, Huang B, Po SS, Tan T, Wang M, Zhou L, Meng G, Yuan S, Zhou X, Li X, Wang Z, Wang S, Jiang H (2017) Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc Interv 10:1511–1520. https://doi.org/10.1016/j.jcin.2017.04.036

    Article  Google Scholar 

  50. Yu L, Huang B, Zhou X, Wang S, Wang Z, Wang M, Li X, Zhou L, Meng G, Yuan S, Wang Y, Jiang H (2017) Renal sympathetic stimulation and ablation affect ventricular arrhythmia by modulating autonomic activity in a cesium-induced long QT canine model. Heart Rhythm 14:912–919. https://doi.org/10.1016/j.hrthm.2017.02.010

    Article  Google Scholar 

  51. Yu L, Scherlag BJ, Sha Y, Li S, Sharma T, Nakagawa H, Jackman WM, Lazzara R, Jiang H, Po SS (2012) Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm 9:804–809. https://doi.org/10.1016/j.hrthm.2011.12.023

    Article  Google Scholar 

  52. Yu L, Wang S, Zhou X, Wang Z, Huang B, Liao K, Saren G, Chen M, Po SS, Jiang H (2016) Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model. JACC Clin Electrophysiol 2:330–339. https://doi.org/10.1016/j.jacep.2015.11.006

    Article  Google Scholar 

  53. Yu L, Zhou L, Cao G, Po SS, Huang B, Zhou X, Wang M, Yuan S, Wang Z, Wang S, Jiang H (2017) Optogenetic modulation of cardiac sympathetic nerve activity to prevent ventricular arrhythmias. J Am Coll Cardiol 70:2778–2790. https://doi.org/10.1016/j.jacc.2017.09.1107

    Article  Google Scholar 

  54. Yu YL, Thijs L, Yu CG, Yang WY, Melgarejo JD, Wei DM, Wei FF, Nawrot TS, Verhamme P, Roels HA, Staessen JA, Zhang ZY (2021) Two-year responses of heart rate and heart rate variability to first occupational lead exposure. Hypertension 77:1775–1786. https://doi.org/10.1161/HYPERTENSIONAHA.120.16545

    Article  CAS  Google Scholar 

  55. Zhang D, Hu W, Tu H, Hackfort BT, Duan B, Xiong W, Wadman MC, Li YL (2021) Macrophage depletion in stellate ganglia alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis by attenuating neuroinflammation in heart failure. Basic Res Cardiol 116:28. https://doi.org/10.1007/s00395-021-00871-x

    Article  CAS  Google Scholar 

  56. Zhang Q, Yao F, Raizada MK, O’Rourke ST, Sun C (2009) Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 104:1421–1428. https://doi.org/10.1161/CIRCRESAHA.108.192302

    Article  CAS  Google Scholar 

  57. Zhao S, Kusminski CM, Scherer PE (2021) Adiponectin, leptin and cardiovascular disorders. Circ Res 128:136–149. https://doi.org/10.1161/CIRCRESAHA.120.314458

    Article  CAS  Google Scholar 

  58. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83. https://doi.org/10.1161/01.RES.0000133678.22968.e3

    Article  CAS  Google Scholar 

  59. Zhou Z, Li S, Sheng X, Liu Z, Lai Y, Wang M, Wang Z, Zhou L, Meng G, Chen H, Zhou H, Zhou X, Jiang H (2020) Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system: a potential treatment target for atrial fibrillation. Int J Cardiol 302:59–66. https://doi.org/10.1016/j.ijcard.2019.12.031

    Article  Google Scholar 

  60. Ziegler KA, Ahles A, Wille T, Kerler J, Ramanujam D, Engelhardt S (2018) Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res 114:291–299. https://doi.org/10.1093/cvr/cvx227

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [81871486, 81970287 and 82100530], and Foundation for Innovative Research Groups of Natural Science Foundation of Hubei Province, China (2021CFA010).

Author information

Authors and Affiliations

Authors

Contributions

ZZ, LY and HJ designed the study. CL, SX, SD, QD and JS conducted the study. ZZ, JW, FY, FG and YZ analyzed the data. ZZ, MW, YW, and LZ drafted the manuscript. All authors have approved the manuscript.

Corresponding authors

Correspondence to Hong Jiang or Lilei Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 438 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Liu, C., Xu, S. et al. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model. Basic Res Cardiol 117, 34 (2022). https://doi.org/10.1007/s00395-022-00939-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-022-00939-2

Keywords

Navigation