Skip to main content

Advertisement

Log in

Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca2+ channel activity and excitation–contraction coupling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Cardiomyocyte L-type Ca2+ channels (Cavs) are targets of signaling pathways that modulate channel activity in response to physiologic stimuli. Cav regulation is typically transient and beneficial but chronic stimulation can become pathologic; therefore, gaining a more complete understanding of Cav regulation is of critical importance. Intracellular O-linked glycosylation (O-GlcNAcylation), which is the result of two enzymes that dynamically add and remove single N-acetylglucosamines to and from intracellular serine/threonine residues (OGT and OGA respectively), has proven to be an increasingly important post-translational modification that contributes to the regulation of many physiologic processes. However, there is currently no known role for O-GlcNAcylation in the direct regulation of Cav activity nor is its contribution to cardiac electrical signaling and EC coupling well understood. Here we aimed to delineate the role of O-GlcNAcylation in regulating cardiomyocyte L-type Cav activity and its subsequent effect on EC coupling by utilizing a mouse strain possessing an inducible cardiomyocyte-specific OGT-null-transgene. Ablation of the OGT-gene in adult cardiomyocytes (OGTKO) reduced OGT expression and O-GlcNAcylation by > 90%. Voltage clamp recordings indicated an ~ 40% reduction in OGTKO Cav current (ICa), but with increased efficacy of adrenergic stimulation, and Cav steady-state gating and window current were significantly depolarized. Consistently, OGTKO cardiomyocyte intracellular Ca2+ release and contractility were diminished and demonstrated greater beat-to-beat variability. Additionally, we show that the Cav α1 and β2 subunits are O-GlcNAcylated while α2δ1 is not. Echocardiographic analyses indicated that the reductions in OGTKO cardiomyocyte Ca2+ handling and contractility were conserved at the whole-heart level as evidenced by significantly reduced left-ventricular contractility in the absence of hypertrophy. The data indicate, for the first time, that O-GlcNAc signaling is a critical and direct regulator of cardiomyocyte ICa achieved through altered Cav expression, gating, and response to adrenergic stimulation; these mechanisms have significant implications for understanding how EC coupling is regulated in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data and materials are available upon request.

References

  1. Abele K, Yang J (2012) Regulation of voltage-gated calcium channels by proteolysis. Sheng Li Xue Bao 64:504–514

    CAS  PubMed  Google Scholar 

  2. Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT (2002) Engineered calmodulins reveal the unexpected eminence of Ca2 + channel inactivation in controlling heart excitation. Proc Natl Acad Sci U S A. 99:17185–17190. https://doi.org/10.1073/pnas.262372999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ariyaratne A, Zocchi G (2015) Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel. Phys Rev E Stat Nonlin Soft Matter Phys. 91:032701. https://doi.org/10.1103/physreve.91.032701

    Article  PubMed  Google Scholar 

  4. Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci U S A. 112:6050–6055. https://doi.org/10.1073/pnas.1424017112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bers DM, Grandi E (2009) Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels. J Cardiovasc Pharmacol 54:180–187. https://doi.org/10.1097/FJC.0b013e3181a25078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bersell K, Choudhury S, Mollova M, Polizzotti BD, Ganapathy B, Walsh S, Wadugu B, Arab S, Kuhn B (2013) Moderate and high amounts of tamoxifen in alphaMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death. Dis Model Mech. 6:1459–1469. https://doi.org/10.1242/dmm.010447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brunet S, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2015) Phosphorylation sites in the Hook domain of CaVbeta subunits differentially modulate CaV1.2 channel function. J Mol Cell Cardiol 87:248–256. https://doi.org/10.1016/j.yjmcc.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671. https://doi.org/10.1007/s00125-014-3171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237. https://doi.org/10.1074/jbc.M303810200

    Article  CAS  PubMed  Google Scholar 

  10. Dassanayaka S, Brainard RE, Watson LJ, Long BW, Brittian KR, DeMartino AM, Aird AL, Gumpert AM, Audam TN, Kilfoil PJ, Muthusamy S, Hamid T, Prabhu SD, Jones SP (2017) Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy. Basic Res Cardiol 112:23. https://doi.org/10.1007/s00395-017-0612-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Jongh KS, Warner C, Colvin AA, Catterall WA (1991) Characterization of the two size forms of the alpha 1 subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci U S A. 88:10778–10782. https://doi.org/10.1073/pnas.88.23.10778

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deng W, Ednie AR, Qi J, Bennett ES (2016) Aberrant sialylation causes dilated cardiomyopathy and stress-induced heart failure. Basic Res Cardiol 111:57. https://doi.org/10.1007/s00395-016-0574-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dubois-Deruy E, Belliard A, Mulder P, Bouvet M, Smet-Nocca C, Janel S, Lafont F, Beseme O, Amouyel P, Richard V, Pinet F (2015) Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure. Cardiovasc Res 107:56–65. https://doi.org/10.1093/cvr/cvv136

    Article  PubMed  Google Scholar 

  14. Ednie AR, Bennett ES (2015) Reduced sialylation impacts ventricular repolarization by modulating specific K + channel isoforms distinctly. J Biol Chem 290:2769–2783. https://doi.org/10.1074/jbc.M114.605139

    Article  CAS  PubMed  Google Scholar 

  15. Ednie AR, Deng W, Yip KP, Bennett ES (2019) Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J. 33:1248–1261. https://doi.org/10.1096/fj.201801057R

    Article  CAS  PubMed  Google Scholar 

  16. Ednie AR, Horton KK, Wu J, Bennett ES (2013) Expression of the sialyltransferase, ST3Gal4, impacts cardiac voltage-gated sodium channel activity, refractory period and ventricular conduction. J Mol Cell Cardiol 59:117–127. https://doi.org/10.1016/j.yjmcc.2013.02.013

    Article  CAS  PubMed  Google Scholar 

  17. Ednie AR, Parrish AR, Sonner MJ, Bennett ES (2019) Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. J Mol Cell Cardiol 132:13–23. https://doi.org/10.1016/j.yjmcc.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Emmerich CH, Cohen P (2015) Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Biochem Biophys Res Commun 466:1–14. https://doi.org/10.1016/j.bbrc.2015.08.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, Bers DM (2013) Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502:372–376. https://doi.org/10.1038/nature12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol. 302:H2122–2130. https://doi.org/10.1152/ajpheart.00775.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Foot N, Henshall T, Kumar S (2017) Ubiquitination and the Regulation of Membrane Proteins. Physiol Rev 97:253–281. https://doi.org/10.1152/physrev.00012.2016

    Article  PubMed  Google Scholar 

  22. Fu Y, Xiao H, Zhang Y (2012) Beta-adrenoceptor signaling pathways mediate cardiac pathological remodeling. Front Biosci (Elite Ed) 4:1625–1637. https://doi.org/10.2741/484

    Article  Google Scholar 

  23. Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal 3:ra70. https://doi.org/10.1126/scisignal.2001152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD, Hosey MM (1997) Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 272:19401–19407. https://doi.org/10.1074/jbc.272.31.19401

    Article  CAS  PubMed  Google Scholar 

  25. Gerhardstein BL, Puri TS, Chien AJ, Hosey MM (1999) Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the beta 2 subunit of L-type voltage-dependent calcium channels. Biochemistry 38:10361–10370. https://doi.org/10.1021/bi990896o

    Article  CAS  PubMed  Google Scholar 

  26. Grandi E, Morotti S, Ginsburg KS, Severi S, Bers DM (2010) Interplay of voltage and Ca-dependent inactivation of L-type Ca current. Prog Biophys Mol Biol 103:44–50. https://doi.org/10.1016/j.pbiomolbio.2010.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359. https://doi.org/10.1146/annurev.ph.53.030191.002013

    Article  CAS  PubMed  Google Scholar 

  28. Haase H, Striessnig J, Holtzhauer M, Vetter R, Glossmann H (1991) A rapid procedure for the purification of cardiac 1,4-dihydropyridine receptors from porcine heart. Eur J Pharmacol 207:51–59. https://doi.org/10.1016/s0922-4106(05)80037-9

    Article  CAS  PubMed  Google Scholar 

  29. Hart GW (2014) Three decades of research on O-GlcNAcylation—a major nutrient sensor that regulates signaling, transcription and cellular metabolism. Front Endocrinol. (Lausanne) 5:183. https://doi.org/10.3389/fendo.2014.00183

    Article  Google Scholar 

  30. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858. https://doi.org/10.1146/annurev-biochem-060608-102511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, Dillmann WH (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96:1006–1013. https://doi.org/10.1161/01.Res.0000165478.06813.58

    Article  CAS  PubMed  Google Scholar 

  32. Ingham RJ, Gish G, Pawson T (2004) The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23:1972–1984. https://doi.org/10.1038/sj.onc.1207436

    Article  CAS  PubMed  Google Scholar 

  33. Jensen RV, Zachara NE, Nielsen PH, Kimose HH, Kristiansen SB, Bøtker HE (2013) Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc Res 97:369–378. https://doi.org/10.1093/cvr/cvs337

    Article  CAS  PubMed  Google Scholar 

  34. Jiang K, Bai B, Ta Y, Zhang T, Xiao Z, Wang PG, Zhang L (2016) O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway. Biochem Biophys Res Commun 471:539–544. https://doi.org/10.1016/j.bbrc.2016.02.037

    Article  CAS  PubMed  Google Scholar 

  35. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102. https://doi.org/10.1161/01.res.87.12.1095

    Article  CAS  PubMed  Google Scholar 

  36. Katchman A, Yang L, Zakharov SI, Kushner J, Abrams J, Chen BX, Liu G, Pitt GS, Colecraft HM, Marx SO (2017) Proteolytic cleavage and PKA phosphorylation of alpha1C subunit are not required for adrenergic regulation of CaV1.2 in the heart. Proc Natl. Acad Sci U S A. 114:9194–9199. https://doi.org/10.1073/pnas.1706054114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keef KD, Hume JR, Zhong J (2001) Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a, b) by protein kinases. Am J Physiol Cell Physiol 281:C1743–1756. https://doi.org/10.1152/ajpcell.2001.281.6.C1743

    Article  CAS  PubMed  Google Scholar 

  38. Kumari N, Gaur H, Bhargava A (2018) Cardiac voltage gated calcium channels and their regulation by beta-adrenergic signaling. Life Sci 194:139–149. https://doi.org/10.1016/j.lfs.2017.12.033

    Article  CAS  PubMed  Google Scholar 

  39. Laczy B, Marsh SA, Brocks CA, Wittmann I, Chatham JC (2010) Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner. Am J Physiol Heart Circ Physiol. 299:H1715–1727. https://doi.org/10.1152/ajpheart.00337.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  41. Lee KS, Marban E, Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 364:395–411. https://doi.org/10.1113/jphysiol.1985.sp015752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310. https://doi.org/10.1016/j.cmet.2012.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lima VV, Giachini FR, Hardy DM, Webb RC, Tostes RC (2011) O-GlcNAcylation: a novel pathway contributing to the effects of endothelin in the vasculature. Am J Physiol Regul Integr Comp Physiol 300:R236–250. https://doi.org/10.1152/ajpregu.00230.2010

    Article  CAS  PubMed  Google Scholar 

  44. Liu G, Papa A, Katchman AN, Zakharov SI, Roybal D, Hennessey JA, Kushner J, Yang L, Chen BX, Kushnir A, Dangas K, Gygi SP, Pitt GS, Colecraft HM, Ben-Johny M, Kalocsay M, Marx SO (2020) Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 577:695–700. https://doi.org/10.1038/s41586-020-1947-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu Z, Ballou LM, Jiang YP, Cohen IS, Lin RZ (2011) Restoration of defective L-type Ca2+ current in cardiac myocytes of type 2 diabetic db/db mice by Akt and PKC-iota. J Cardiovasc Pharmacol 58:439–445. https://doi.org/10.1097/FJC.0b013e318228e68c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo B, Soesanto Y, McClain DA (2008) Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol 28:651–657. https://doi.org/10.1161/atvbaha.107.159533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manning JR, Yin G, Kaminski CN, Magyar J, Feng HZ, Penn J, Sievert G, Thompson K, Jin JP, Andres DA, Satin J (2013) Rad GTPase deletion increases L-type calcium channel current leading to increased cardiac contraction. J Am Heart Assoc 2:e000459. https://doi.org/10.1161/jaha.113.000459

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615. https://doi.org/10.2337/diabetes.55.03.06.db05-1284

    Article  CAS  PubMed  Google Scholar 

  49. Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron 22:549–558. https://doi.org/10.1016/s0896-6273(00)80709-6

    Article  CAS  PubMed  Google Scholar 

  50. Peterson SB, Hart GW (2016) New insights: a role for O-GlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol 51:150–161. https://doi.org/10.3109/10409238.2015.1135102

    Article  CAS  PubMed  Google Scholar 

  51. Puri TS, Gerhardstein BL, Zhao XL, Ladner MB, Hosey MM (1997) Differential effects of subunit interactions on protein kinase A- and C-mediated phosphorylation of L-type calcium channels. Biochemistry 36:9605–9615. https://doi.org/10.1021/bi970500d

    Article  CAS  PubMed  Google Scholar 

  52. Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB, Vecoli C, Hart GW, Murphy AM (2008) O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res 103:1354–1358. https://doi.org/10.1161/circresaha.108.184978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM (2015) Removal of abnormal myofilament O-GlcNAcylation restores Ca2+ sensitivity in diabetic cardiac muscle. Diabetes 64:3573–3587. https://doi.org/10.2337/db14-1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reeves RA, Lee A, Henry R, Zachara NE (2014) Characterization of the specificity of O-GlcNAc reactive antibodies under conditions of starvation and stress. Anal Biochem 457:8–18. https://doi.org/10.1016/j.ab.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren J, Gintant GA, Miller RE, Davidoff AJ (1997) High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner. Am J Physiol 273:H2876–2883. https://doi.org/10.1152/ajpheart.1997.273.6.H2876

    Article  CAS  PubMed  Google Scholar 

  56. Rougier JS, Albesa M, Abriel H, Viard P (2011) Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) controls the sorting of newly synthesized Ca(V)1.2 calcium channels. J Biol Chem 286:8829–8838. https://doi.org/10.1074/jbc.M110.166520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rougier JS, Albesa M, Syam N, Halet G, Abriel H, Viard P (2015) Ubiquitin-specific protease USP2-45 acts as a molecular switch to promote alpha2delta-1-induced downregulation of Cav1.2 channels. Pflugers Arch 467:1919–1929. https://doi.org/10.1007/s00424-014-1636-6

    Article  CAS  PubMed  Google Scholar 

  58. Ruan HB, Nie Y, Yang X (2013) Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics 12:3489–3497. https://doi.org/10.1074/mcp.R113.029751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seravalle G, Mancia G, Grassi G (2014) Role of the sympathetic nervous system in hypertension and hypertension-related cardiovascular disease. High blood press. Cardiovasc Prev. 21:89–105. https://doi.org/10.1007/s40292-014-0056-1

    Article  CAS  Google Scholar 

  60. Sipido KR, Maes M, Van de Werf F (1997) Low efficiency of Ca2+ entry through the Na(+)-Ca2+ exchanger as trigger for Ca+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na(+)-Ca2+ exchange. Circ Res 81:1034–1044. https://doi.org/10.1161/01.res.81.6.1034

    Article  CAS  PubMed  Google Scholar 

  61. Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104:1143–1156. https://doi.org/10.1083/jcb.104.5.1143

    Article  CAS  PubMed  Google Scholar 

  62. Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11:215–229. https://doi.org/10.1074/mcp.O112.018366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang DW, Kiyosue T, Shigematsu S, Arita M (1995) Abnormalities of K+ and Ca2 + currents in ventricular myocytes from rats with chronic diabetes. Am J Physiol 269:H1288–1296. https://doi.org/10.1152/ajpheart.1995.269.4.H1288

    Article  CAS  PubMed  Google Scholar 

  64. Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE, Lemma KM, Long BW, Prabhu SD, Xuan YT, Jones SP (2010) O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci U S A. 107:17797–17802. https://doi.org/10.1073/pnas.1001907107

    Article  PubMed  PubMed Central  Google Scholar 

  65. Watson LJ, Long BW, DeMartino AM, Brittian KR, Readnower RD, Brainard RE, Cummins TD, Annamalai L, Hill BG, Jones SP (2014) Cardiomyocyte Ogt is essential for postnatal viability. Am J Physiol Heart Circ Physiol. 306:H142–153. https://doi.org/10.1152/ajpheart.00438.2013

    Article  CAS  PubMed  Google Scholar 

  66. Wu W, Zheng X, Wang J, Yang T, Dai W, Song S, Fang L, Wang Y, Gu J (2018) O-GlcNAcylation on Rab3A attenuates its effects on mitochondrial oxidative phosphorylation and metastasis in hepatocellular carcinoma. Cell Death Dis. 9:970. https://doi.org/10.1038/s41419-018-0961-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465. https://doi.org/10.1038/nrm.2017.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yokoe S, Asahi M, Takeda T, Otsu K, Taniguchi N, Miyoshi E, Suzuki K (2010) Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology 20:1217–1226. https://doi.org/10.1093/glycob/cwq071

    Article  CAS  PubMed  Google Scholar 

  69. Zhu WZ, El-Nachef D, Yang X, Ledee D, Olson AK (2019) O-GlcNAc transferase promotes compensated cardiac function and protein kinase A O-GlcNAcylation during early and established pathological hypertrophy from pressure overload. J Am Heart Assoc 8:e011260. https://doi.org/10.1161/jaha.118.011260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by grants from the National Science Foundation [Division of Molecular and Cellular Biosciences-1856199 to A.R.E and E.S.B., Division of Integrative Organismal Systems-1660926 to E.S.B.]; an American Heart Association Postdoctoral Fellowship (15POST25710010 to A.R.E]; and an American Heart Association Greater Southeast Affiliate Grant-In-Aid [14GRNT20450148 to E.S.B.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Ednie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Ethics approval

Animals were handled in accordance with the NIH Guide for the Care and Use of Laboratory Animals. All protocols involving animals were approved by the Wright State University Institutional Animal Care and Use Committee (AUP 1163).

Consent to participate

Not applicable.

Consent for publication

All authors freely consent for publication.

Code availability

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1: Cav activity parameters. Table 2: Echocardiographic Parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ednie, A.R., Bennett, E.S. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca2+ channel activity and excitation–contraction coupling. Basic Res Cardiol 115, 59 (2020). https://doi.org/10.1007/s00395-020-00820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-020-00820-0

Keywords

Navigation