Skip to main content
Log in

Is a spot urine sample a good substitution to estimate 24-h urinary sodium excretion in a population ≥ 50 years old? A validation study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

A variety of prediction equations have been able to estimate 24-h urinary sodium excretion from spot urine samples; however, Iranians over the age of 50 have not been compared and verified. Using spot urine samples as a substitute for 24-h urine samples to estimate 24-h urine sodium excretion among the population age 50 and older are the purpose of this study.

Methods

A 24-h urinary sodium excretion was studied by well-known Kawasaki, INTERSALT, Tanaka, and World Health Organization/Pan American Health Organization (WHO/PAHO) formulas. On 360 individuals, the mean bias, agreements between estimated and measured values, correlation, absolute and relative differences, and misclassification rates were evaluated for four equations.

Results

As a result, the mean urinary sodium excretion for a 24-h period was 136.3 ± 52.21 mmol/24-h, which corresponds to a calculated intake of 9.1 ± 3.8 g of salt per day. According to the WHO/PAHO formula, the mean bias between measured values and estimated 24-h urinary sodium excretion is − 21.6 mg/day (95% confidence interval (CI) − 144.8, 101.6 mg/day), which is the smallest difference compared with the other three formulas. The lowest rate of individual misclassification of salt intake was 40% for WHO/PAHO, especially for those who consumed less than 9 g/day, while Kawasaki had the lowest misclassification rate at higher levels of salt intake.

Conclusion

As a result of our research, the WHO/PAHO equations accurately predict 24-h urinary sodium excretion among Iranians aged ≥ 50 more than other equations, both at the population level and at the individual level. However, further study is needed in regard to different ages in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cappuccio FP (2013) Cardiovascular and other effects of salt consumption. Kidney Int Suppl 3:312–315

    Article  CAS  Google Scholar 

  2. He FJ, Burnier M, Macgregor GA (2011) Nutrition in cardiovascular disease: salt in hypertension and heart failure. Eur Heart J 32:3073–3080

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organisation (2018) The top 10 causes of death. WHO Press

    Google Scholar 

  4. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (Lond, Engl) 380:2224–2260

    Article  Google Scholar 

  5. Omidi N, Arabloo J, Rezapour A, Alaeddini F, Bragazzi NL, Pourasghari H et al (2021) Burden of hypertensive heart disease in Iran during 1990–2017: findings from the Global Burden of Disease study 2017. PLoS ONE 16:e0257617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gakidou E, Afshin A, Abajobir AA, Abate KH, Abbafati C, Kaja MA (2017) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet (Lond, Engl) 390:1345–1422

    Article  Google Scholar 

  7. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L et al (2017) Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317:165–182

    Article  PubMed  Google Scholar 

  8. Irazola VE, Gutierrez L, Bloomfield G, Carrillo-Larco RM, Dorairaj P, Gaziano T et al (2016) Hypertension prevalence, awareness, treatment, and control in selected LMIC communities: results from the NHLBI/UHG network of centers of excellence for chronic diseases. Glob Heart 11:47–59

    Article  PubMed  Google Scholar 

  9. World Health Organization (2012) A comprehensive global monitoring framework including indicators and a set of voluntary global targets for the prevention and control of noncommunicable diseases. World Health Organization, Geneva

    Google Scholar 

  10. Popkin BM (2006) Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr 84:289–298

    Article  CAS  PubMed  Google Scholar 

  11. McLean RM, Farmer VL, Nettleton A, Cameron CM, Cook NR (2018) Twenty-four-hour diet recall and diet records compared with 24-hour urinary excretion to predict an individual’s sodium consumption: a systematic review. J Clin Hypertens (Greenwich) 20:1360–1376

    Article  PubMed  Google Scholar 

  12. Ji C, Sykes L, Paul C, Dary O, Legetic B, Campbell NR et al (2012) Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Pan Am J Public Health 32:307–315

    Article  Google Scholar 

  13. Cogswell ME, Maalouf J, Elliott P, Loria CM, Patel S, Bowman BA (2015) Use of urine biomarkers to assess sodium intake: challenges and opportunities. Annu Rev Nutr 35:349–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McLean RM (2014) Measuring population sodium intake: a review of methods. Nutrients 6:4651–4662

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tanaka T, Okamura T, Miura K, Kadowaki T, Ueshima H, Nakagawa H et al (2002) A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens 16:97–103

    Article  CAS  PubMed  Google Scholar 

  16. Kawasaki T, Itoh K, Uezono K, Sasaki H (1993) A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin Exp Pharmacol Physiol 20:7–14

    Article  CAS  PubMed  Google Scholar 

  17. Brown IJ, Dyer AR, Chan Q, Cogswell ME, Ueshima H, Stamler J et al (2013) Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study. Am J Epidemiol 177:1180–1192

    Article  PubMed  PubMed Central  Google Scholar 

  18. WHO (2010) WHO/PAHO Regional Expert Group for cardiovascular disease prevention through population-wide dietary salt reduction. Protocol for population level sodium determination in 24-hour urine samples Geneva. WHO Press

    Google Scholar 

  19. Aminisani N, Azimi-Nezhad M, Shamshirgaran SM, Mirhafez SR, Borji A, Poustchi H et al (2022) Cohort profile: the Iranian Longitudinal Study on Ageing (IRLSA): the first comprehensive study on ageing in Iran. Int J Epidemiol 51:e177–e188

    Article  PubMed  Google Scholar 

  20. Zhang JY, Yan LX, Tang JL, Ma JX, Guo XL, Zhao WH et al (2014) Estimating daily salt intake based on 24 h urinary sodium excretion in adults aged 18–69 years in Shandong, China. BMJ Open 4:e005089

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerová J, Richart T et al (2011) Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 305:1777–1785

    Article  CAS  PubMed  Google Scholar 

  22. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gholami A, Ghanbari A, Rezaei S, Baradaran HR, Khatibzadeh S, Parsaeian M et al (2022) National and sub-national trends of salt intake in Iranians from 2000 to 2016: a systematic analysis. Arch Public Health 80:120

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Liao H, Ye R, Li X, Gou Q, Zhang Z et al (2021) Assessment and validation of three spot urine assay methods for the estimation of 24-hour urinary sodium excretion in Chinese Tibetan adults living in the mountains. J Clin Hypertens (Greenwich) 23:1588–1598

    Article  CAS  PubMed  Google Scholar 

  25. Zhou L, Tian Y, Fu JJ, Jiang YY, Bai YM, Zhang ZH et al (2017) Validation of spot urine in predicting 24-h sodium excretion at the individual level. Am J Clin Nutr 105:1291–1296

    Article  CAS  PubMed  Google Scholar 

  26. Peng Y, Li W, Wang Y, Chen H, Bo J, Wang X et al (2016) Validation and assessment of three methods to estimate 24-h urinary sodium excretion from spot urine samples in Chinese adults. PLoS ONE 11:e0149655

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu J, Du X, Bai Y, Fang L, Liu M, Ji N et al (2020) Assessment and validation of spot urine in estimating the 24-h urinary sodium, potassium, and sodium/potassium ratio in Chinese adults. J Hum Hypertens 34:184–192

    Article  CAS  PubMed  Google Scholar 

  28. McLean R, Williams S, Mann J (2014) Monitoring population sodium intake using spot urine samples: validation in a New Zealand population. J Hum Hypertens 28:657–662

    Article  CAS  PubMed  Google Scholar 

  29. Doenyas-Barak K, Beberashvili I, Bar-Chaim A, Averbukh Z, Vogel O, Efrati S (2015) Daily sodium and potassium excretion can be estimated by scheduled spot urine collections. Nephron 130:35–40

    Article  CAS  PubMed  Google Scholar 

  30. Mizéhoun-Adissoda C, Houehanou C, Chianéa T, Dalmay F, Bigot A, Preux PM et al (2016) Estimation of daily sodium and potassium excretion using spot urine and 24-hour urine samples in a black population. J Clin Hypertens (Greenwich) 18:634–640

    Article  PubMed  Google Scholar 

  31. Swanepoel B, Schutte AE, Cockeran M, Steyn K, Wentzel-Viljoen E (2018) Monitoring the South African population’s salt intake: spot urine v. 24 h urine. Public Health Nutr 21:480–488

    Article  PubMed  Google Scholar 

  32. Charlton K, Ware LJ, Chidumwa G (2020) Prediction of 24-hour sodium excretion from spot urine samples in South African adults: a comparison of four equations. J Hum Hypertens 34:24–33

    Article  CAS  PubMed  Google Scholar 

  33. Cogswell ME, Wang CY, Chen TC, Pfeiffer CM, Elliott P, Gillespie CD et al (2013) Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. Am J Clin Nutr 98:1502–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rezaei S, Mahmoudi Z, Sheidaei A, Aryan Z, Mahmoudi N, Gohari K et al (2018) Salt intake among Iranian population: the first national report on salt intake in Iran. J Hypertens 36:2380–2389

    Article  CAS  PubMed  Google Scholar 

  35. Vidal-Petiot E, Joseph A, Flamant M (2017) Estimation of populational 24-h urinary sodium and potassium excretion from spot urine samples: evaluation of four formulas in a large national representative population. J Hypertens 35:1119–1120

    Article  CAS  PubMed  Google Scholar 

  36. Rhee MY, Kim JH, Shin SJ, Gu N, Nah DY, Hong KS et al (2014) Estimation of 24-hour urinary sodium excretion using spot urine samples. Nutrients 6:2360–2375

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ma W, Yin X, Zhang R, Liu F, Yang D, Fan Y et al (2017) Validation and assessment of three methods to estimate 24-h urinary sodium excretion from spot urine samples in high-risk elder patients of stroke from the rural areas of Shaanxi province. Int J Environ Res Public Health 14:1211

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vidal-Petiot E, Joseph A, Resche-Rigon M, Boutten A, Mullaert J, Mullaer MP et al (2018) External validation and comparison of formulae estimating 24-h sodium intake from a fasting morning urine sample. J Hypertens 36:785–792

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, Zhang J, Liu M, Bai Y, Guo X, Dong J et al (2020) Estimating 24-hour sodium excretion from spot urine samples in chinese adults: can spot urine substitute 24-hour urine samples? Nutrients 12:798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han W, Sun N, Chen Y, Wang H, Xi Y, Ma Z (2015) Validation of the spot urine in evaluating 24-hour sodium excretion in chinese hypertension patients. Am J Hypertens 28:1368–1375

    Article  CAS  PubMed  Google Scholar 

  41. Mill JG, Rodrigues SL, Baldo MP, Malta DC, Szwarcwald CL (2015) Validation study of the Tanaka and Kawasaki equations to estimate the daily sodium excretion by a spot urine sample. Braz J Epidemiol 2:224–237

    Google Scholar 

  42. Mann SJ, Gerber LM (2010) Estimation of 24-hour sodium excretion from spot urine samples. J Clin Hypertens (Greenwich) 12(3):174–180

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by Neyshabur University of Medical Sciences (Grant number: 98-011-22. Ethical code: IR.NUMS.REC.1398.032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Gholami.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariri, M., Ramezani, A.M., Shamshirgaran, S.M. et al. Is a spot urine sample a good substitution to estimate 24-h urinary sodium excretion in a population ≥ 50 years old? A validation study. Eur J Nutr 62, 3277–3286 (2023). https://doi.org/10.1007/s00394-023-03217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03217-6

Keywords

Navigation