Skip to main content

Advertisement

Log in

Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Bacillus coagulans GBI-30, 6086 (BC30) was previously shown to improve nutrient digestibility and amino acid absorption from milk protein in vitro. However, the effect of supplementation with this probiotic on lactose digestibility has not yet been evaluated in vivo.

Methods

Wistar female rats were exposed to an acute high-lactose diet (LD; 35% lactose) meal challenge after 7 days of administration of BC30 (LD-BC; n = 10) or vehicle (LD-C; n = 10). Rats treated with vehicle and exposed to control diet (CD; 35% corn starch) meal were used as controls (CD-C; n = 10). Carbohydrate oxidation (CH_OX) and lipid oxidation (L_OX) were monitored by indirect calorimetry before and after lactose challenge. After the challenge, rats were treated daily with vehicle or probiotic for an additional week and were fed with CD or LD ad libitum to determine the effects of BC30 administration in a lactose-induced diarrhoea and malnutrition model.

Results

LD-C rats showed lower CH_OX levels than CD rats, while LD-BC rats showed similar CH_OX levels compared to CD rats during the lactose challenge, suggesting a better digestion of lactose in the rats supplemented with BC30. BC30 completely reversed the increase in the small intestine length of LD-C animals. LD-BC rats displayed increased intestinal mRNA Muc2 expression. No significant changes were observed due to BC30 administration in other parameters, such as serum calprotectin, intestinal MPO activity, intestinal A1AT and SGLT1 levels or intestinal mRNA levels of Claudin2 and Occludin.

Conclusion

Treatment with BC30 improved the digestibility of lactose in an acute lactose challenge and ameliorated some of the parameters associated with lactose-induced malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analysed in this current study are available from the corresponding author (JT) upon reasonable request.

References

  1. Ugidos-Rodríguez S, Matallana-González MC, Sánchez-Mata MC (2018) Lactose malabsorption and intolerance: a review. Food Funct 9:4056–4068. https://doi.org/10.1039/C8FO00555A

    Article  PubMed  Google Scholar 

  2. Silanikove N, Leitner G, Merin U (2015) The interrelationships between lactose intolerance and the modern dairy industry: global perspectives in evolutional and historical backgrounds. Nutrients 7:7312. https://doi.org/10.3390/NU7095340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen L, Tuo B, Dong H (2016) Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients. https://doi.org/10.3390/NU8010043

    Article  PubMed  PubMed Central  Google Scholar 

  4. Misselwitz B, Butter M, Verbeke K, Fox MR (2019) Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut 68:2080–2091. https://doi.org/10.1136/GUTJNL-2019-318404

    Article  CAS  PubMed  Google Scholar 

  5. Yang J, Deng Y, Chu H et al (2013) Prevalence and presentation of lactose intolerance and effects on dairy product intake in healthy subjects and patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. https://doi.org/10.1016/J.CGH.2012.11.034

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ibba I, Gilli A, Boi MF, Usai P (2014) Effects of exogenous lactase administration on hydrogen breath excretion and intestinal symptoms in patients presenting lactose malabsorption and intolerance. Biomed Res Int. https://doi.org/10.1155/2014/680196

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oak SJ, Jha R (2019) The effects of probiotics in lactose intolerance: a systematic review. Crit Rev Food Sci Nutr 59:1675–1683. https://doi.org/10.1080/10408398.2018.1425977

    Article  CAS  PubMed  Google Scholar 

  8. Maathuis AJH, Keller D, Farmer S (2010) Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Benef Microbes 1:31–36. https://doi.org/10.3920/BM2009.0009

    Article  CAS  PubMed  Google Scholar 

  9. Tripathi MK, Giri SK (2014) Probiotic functional foods: survival of probiotics during processing and storage. J Funct Foods 9:225–241. https://doi.org/10.1016/J.JFF.2014.04.030

    Article  CAS  Google Scholar 

  10. Dolin BJ (2009) Effects of a proprietary Bacillus coagulans preparation on symptoms of diarrhea-predominant irritable bowel syndrome. Methods Find Exp Clin Pharmacol 31:655–659. https://doi.org/10.1358/MF.2009.31.10.1441078

    Article  CAS  PubMed  Google Scholar 

  11. Kalman DS, Schwartz HI, Alvarez P et al (2009) A prospective, randomized, double-blind, placebo-controlled parallel-group dual site trial to evaluate the effects of a Bacillus coagulans-based product on functional intestinal gas symptoms. BMC Gastroenterol 9:85. https://doi.org/10.1186/1471-230X-9-85

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jensen GS, Benson KF, Carter SG, Endres JR (2010) GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol 11:15. https://doi.org/10.1186/1471-2172-11-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimmel M, Keller D, Farmer S, Warrino DE (2010) A controlled clinical trial to evaluate the effect of GanedenBC(30) on immunological markers. Methods Find Exp Clin Pharmacol 32:129–132. https://doi.org/10.1358/MF.2010.32.2.1423881

    Article  CAS  PubMed  Google Scholar 

  14. Fitzpatrick LR, Small JS, Greene WH et al (2012) Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-induced colitis following vancomycin withdrawal in mice. Gut Pathogens. https://doi.org/10.1186/1757-4749-4-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stecker RA, Moon JM, Russo TJ et al (2020) Bacillus coagulans GBI-30, 6086 improves amino acid absorption from milk protein. Nutr Metab (Lond). https://doi.org/10.1186/S12986-020-00515-2

    Article  PubMed  Google Scholar 

  16. Courtois P, Sener A, Scott FW, Malaisse WJ (2004) Disaccharidase activity in the intestinal tract of Wistar-Furth, diabetes-resistant and diabetes-prone biobreeding rats. Br J Nutr 91:201–209. https://doi.org/10.1079/BJN20041026

    Article  CAS  PubMed  Google Scholar 

  17. Norton R, Leite J, Vieira E et al (2001) Use of nucleotides in weanling rats with diarrhea induced by a lactose overload: effect on the evolution of diarrhea and weight and on the histopathology of intestine, liver and spleen. Braz J Med Biol Res 34:195–202

    Article  CAS  PubMed  Google Scholar 

  18. Boakye PA, Brierley SM, Pasilis SP, Balemba OB (2012) Garcinia buchananii bark extract is an effective anti-diarrheal remedy for lactose-induced diarrhea. J Ethnopharmacol 142:539–547. https://doi.org/10.1016/j.jep.2012.05.034

    Article  PubMed  Google Scholar 

  19. Arciniegas EL, Cioccia AMHP (2000) Effect of the lactose induced diarrhea on macronutrients availability and immune function in well-nourished and undernourished rats. Arch Latinoam Nutr 50:48–54

    CAS  PubMed  Google Scholar 

  20. Bueno J, Torres M, Almendros A et al (1994) Effect of dietary nucleotides on small intestinal repair after diarrhoea. Histological and ultrastructural changes. Gut 35:926–933. https://doi.org/10.1136/gut.35.7.926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexandre V, Even PC, Larue-Achagiotis C et al (2013) Lactose malabsorption and colonic fermentations alter host metabolism in rats. Br J Nutr 110:625–631. https://doi.org/10.1017/S0007114512005557

    Article  CAS  PubMed  Google Scholar 

  22. Alexandre V, Davila AM, Bouchoucha M et al (2013) Agreement between indirect calorimetry and traditional tests of lactose malabsorption. Dig Liver Dis 45:727–732. https://doi.org/10.1016/J.DLD.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  23. Weir JBV (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109:1–9. https://doi.org/10.1113/JPHYSIOL.1949.SP004363

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55:628–634

    Article  CAS  PubMed  Google Scholar 

  25. Carraro F, Stuart CA, Hartl WH et al (1990) Effect of exercise and recovery on muscle protein synthesis in human subjects. Am J Physiol 259:E470–E476

    CAS  PubMed  Google Scholar 

  26. Bircher S, Knechtle B (2004) Relationship between fat oxidation and lactate threshold in athletes and obese women and men. J Sport Sci Med 3:174–181

    Google Scholar 

  27. Sung J, Morales W, Kim G et al (2013) Effect of repeated Campylobacter jejuni infection on gut flora and mucosal defense in a rat model of post infectious functional and microbial bowel changes. Neurogastroenterol Motil 25:529–537. https://doi.org/10.1111/nmo.12118

    Article  CAS  PubMed  Google Scholar 

  28. Abdin AA (2013) Targeting sphingosine kinase 1 (SphK1) and apoptosis by colon-specific delivery formula of resveratrol in treatment of experimental ulcerative colitis in rats. Eur J Pharmacol 718:145–153. https://doi.org/10.1016/J.EJPHAR.2013.08.040

    Article  CAS  PubMed  Google Scholar 

  29. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209. https://doi.org/10.1111/1523-1747.ep12506462

    Article  CAS  PubMed  Google Scholar 

  30. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nieto N, Lopez-Pedrosa JM, Mesa MD et al (2000) Chronic diarrhea impairs intestinal antioxidant defense system in rats at weaning. Dig Dis Sci 45:2044–2050. https://doi.org/10.1023/A:1005603019800

    Article  CAS  PubMed  Google Scholar 

  32. van de Heijning BJM, Kegler D, Schipper L et al (2015) Acute and chronic effects of dietary lactose in adult rats are not explained by residual intestinal lactase activity. Nutrients 7:5542–5555. https://doi.org/10.3390/NU7075237

    Article  PubMed  PubMed Central  Google Scholar 

  33. Collares EF, Rossi MA, Macedo AS (1985) Experimental dilatation of the cecum and colon in rats. II. Reversion after induction by the continuous administration of lactose. Arq Gastroenterol 22:192–195

    CAS  PubMed  Google Scholar 

  34. Kim KI, Benevenga NJ, Grummer RH (1979) In vitro measurement of the lactase activity and the fermentation products of lactose in the cecal and colonic contents of rats fed a control or 30% lactose diet. J Nutr 109:856–863. https://doi.org/10.1093/JN/109.5.856

    Article  CAS  PubMed  Google Scholar 

  35. Poulsen SB, Fenton RA, Rieg T (2015) Sodium-glucose cotransport. Curr Opin Nephrol Hypertens 24:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gisbert JP, McNicholl AG (2009) Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig Liver Dis 41:56–66. https://doi.org/10.1016/J.DLD.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  37. Nanini HF, Bernardazzi C, Castro F, De Souza HSP (2018) Damage-associated molecular patterns in inflammatory bowel disease: from biomarkers to therapeutic targets. World J Gastroenterol 24:4622–4634. https://doi.org/10.3748/WJG.V24.I41.4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehmann FS, Burri E, Beglinger C (2015) The role and utility of faecal markers in inflammatory bowel disease. Ther Adv Gastroenterol 8:23–36. https://doi.org/10.1177/1756283X14553384

    Article  CAS  Google Scholar 

  39. Kalla R, Kennedy NA, Ventham NT et al (2016) Serum calprotectin: a novel diagnostic and prognostic marker in inflammatory bowel diseases. Am J Gastroenterol 111:1796–1805. https://doi.org/10.1038/AJG.2016.342

    Article  CAS  PubMed  Google Scholar 

  40. Khan AA, Alsahli MA, Rahmani AH (2018) Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel, Switzerland). https://doi.org/10.3390/MEDSCI6020033

    Article  Google Scholar 

  41. Celi P, Verlhac V, Pérez Calvo E et al (2019) Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol 250:9–31. https://doi.org/10.1016/J.ANIFEEDSCI.2018.07.012

    Article  Google Scholar 

  42. Günzel D, Yu ASL (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569. https://doi.org/10.1152/physrev.00019.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee SH (2015) Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 13:11. https://doi.org/10.5217/ir.2015.13.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  44. Venugopal S, Anwer S, Szászi K (2019) Claudin-2: roles beyond permeability functions. Int J Mol Sci 20:5655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Corfield AP (2015) Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 1850:236–252. https://doi.org/10.1016/J.BBAGEN.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  46. Ma S, Yeom J, Lim YH (2020) Dairy Propionibacterium freudenreichii ameliorates acute colitis by stimulating MUC2 expression in intestinal goblet cell in a DSS-induced colitis rat model. Sci Rep. https://doi.org/10.1038/S41598-020-62497-8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao J, Li Y, Wan Y et al (2019) A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front Microbiol. https://doi.org/10.3389/FMICB.2019.00477

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yu JY, He XL, Puthiyakunnon S et al (2015) Mucin2 is required for probiotic agents-mediated blocking effects on meningitic E. coli-induced pathogenicities. J Microbiol Biotechnol 25:1751–1760. https://doi.org/10.4014/JMB.1502.02010

    Article  CAS  PubMed  Google Scholar 

  49. Kuugbee ED, Shang X, Gamallat Y et al (2016) Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci 61:2908–2920. https://doi.org/10.1007/S10620-016-4238-7

    Article  CAS  PubMed  Google Scholar 

  50. Cervantes-Garciá D, Jiménez M, Rivas-Santiago CE et al (2021) Lactococcus lactis NZ9000 prevents asthmatic airway inflammation and remodelling in rats through the improvement of intestinal barrier function and systemic TGF-β production. Int Arch Allergy Immunol 182:277–291. https://doi.org/10.1159/000511146

    Article  CAS  PubMed  Google Scholar 

  51. Zhuge A, Li B, Yuan Y et al (2020) Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates d-galactosamine-induced acute liver injury in rats. Appl Microbiol Biotechnol 104:7437–7455. https://doi.org/10.1007/S00253-020-10749-Y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks for their technical support to Yaiza Tobajas, Anna Antolín, Iris Triguero and Cristina Egea, who are laboratory technicians at the Technological Unit of Nutrition and Health.

Funding

This work was financially supported by the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under grant agreement of a project called TOLERA EXP 00101692.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JT, JMDB, AC, FP, AR-G, AH and VG; funding acquisition, JMDB, AC and FP; investigation, JT, UC, RM-C, CD-C, AM-C, JMA-H and GC; formal analysis, JT and UC; methodology, JT and RM-C; writing—original draft, JT; writing—review and editing, JT, UC, RM-C, CD-C, JMA-H, JMDB and AC; supervision, JMDB and AC.

Corresponding authors

Correspondence to Joan Teichenné or Josep M. Del Bas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teichenné, J., Catalán, Ú., Mariné-Casadó, R. et al. Bacillus coagulans GBI-30, 6086 (BC30) improves lactose digestion in rats exposed to a high-lactose meal. Eur J Nutr 62, 2649–2659 (2023). https://doi.org/10.1007/s00394-023-03183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03183-z

Keywords

Navigation