Skip to main content
Log in

Effectiveness of anthocyanins rich foods on cardiometabolic factors in individuals with metabolic syndrome: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of this systematic review with meta-analysis was to determine whether anthocyanin-rich foods are effective to improve cardiometabolic markers in individuals with metabolic syndrome (MetS), compared with placebo or control interventions.

Methods

We searched MEDLINE, CENTRAL, Embase, LILACS, CINAHL, and Web of Science from their inception up to March 2022. We include clinical trials (randomized clinical trials, controlled clinical trials, and cross-over trials) with anthocyanin-rich foods versus placebo or control intervention that assessment cardiometabolic factors.

Results

We found 14 clinical trials that met the eligibility criteria, and we included 10 studies for the quantitative synthesis. For anthocyanin-rich foods versus control interventions, the mean difference (MD) for low-density lipoprotein (LDL) was − 7.98 mg/dL (CI = − 15.20 to − 0.77, GRADE: Very low). For homeostatic model assessment for insulin resistance (HOMA-IR), the MD was 0.04 (CI = 0.08 to 0.16, GRADE: Moderate). The MD for interleukin 6 was 0.00 pg/mL (CI = − 0.01 to 0.00, GRADE: Low). For tumor necrosis factor alpha (TNF-α), the standardized mean difference (SMD) was − 0.52 pg/mL (CI = 0.85 to 0.19 GRADE: Very low) when compared with the control interventions. The certainty of the evidence for the other outcomes it is very low.

Conclusion

Our findings suggest that anthocyanin-rich foods could improve certain cardiometabolic markers (e.g., TC, TG, LDL, and TNF-α) among individuals with MetS (with very low quality evidence according to GRADE), compared with placebo or other control interventions.

PROSPERO registration number

CRD42020187287.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Raw data that support the fndings of this study can be provided by the corresponding author upon reasonable request.

References

  1. Kaur J (2014) A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014:943162. https://doi.org/10.1155/2014/943162

    Article  PubMed  PubMed Central  Google Scholar 

  2. Samson SL, Garber AJ (2014) Metabolic syndrome. Endocrinol Metab Clin North Am 43(1):1–23. https://doi.org/10.1016/j.ecl.2013.09.009

    Article  PubMed  Google Scholar 

  3. Nolan PB, Carrick-Ranson G, Stinear JW, Reading SA, Dalleck LC (2017) Prevalence of metabolic syndrome and metabolic syn-drome components in young adults: a pooled analysis. Prev Med Rep 19(7):211–215. https://doi.org/10.1016/j.pmedr.2017.07.004

    Article  Google Scholar 

  4. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):12. https://doi.org/10.1007/s11906-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56(14):1113–1132. https://doi.org/10.1016/j.jacc.2010.05.034

    Article  PubMed  Google Scholar 

  6. Grundy SM (2016) Metabolic syndrome update. Trends Cardiovasc Med 26:364–373. https://doi.org/10.1016/j.tcm.2015.10.004

    Article  PubMed  Google Scholar 

  7. Hulsmans M, Holvoet P (2010) The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med 14:70–78. https://doi.org/10.1111/j.1582-4934.2009.00978.x

    Article  CAS  PubMed  Google Scholar 

  8. Xia X, Weng J (2010) Targeting metabolic syndrome: candidate natural agents. J Diabetes 2(4):243–249. https://doi.org/10.1111/j.1753-0407.2010.00090.x

    Article  CAS  PubMed  Google Scholar 

  9. Grundy S (2009) Advancing drug therapy of the metabolic syndrome. Nat Rev Drug Discov 8:341. https://doi.org/10.1038/nrd2894

    Article  CAS  Google Scholar 

  10. Wallace TC, Giusti MM (2015) Anthocyanins. Adv Nutr 6(5):620–622. https://doi.org/10.3945/an.115.009233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallace TC, Slavin M, Frankenfeld CL (2016) Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients 8(1):32. https://doi.org/10.3390/nu8010032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kolehmainen M, Mykkänen O, Kirjavainen PV, Leppänen T, Moilanen E, Adriaens M et al (2012) Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res 56(10):1501–1510. https://doi.org/10.1002/mnfr.201200195

    Article  CAS  PubMed  Google Scholar 

  13. De Ferrars RM, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, Kay CD (2014) The pharmacokinetics of anthocya-nins and their metabolites in humans. Br J Pharmacol 171:3268–3282. https://doi.org/10.1111/bph.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vendrame S, Klimis-Zacas D (2019) Potential factors influencing the effects of anthocyanins on blood pressure regulation in humans: a review. Nutrients 11(6):1431. https://doi.org/10.3390/nu11061431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahles S, Joris PJ, Plat J (2021) Effects of berry anthocyanins on cognitive performance, vascular function and cardiometabolic risk markers: a systematic review of randomized placebo-controlled intervention studies in humans. Int J Mol Sci 22(12):6482. https://doi.org/10.3390/ijms22126482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curtis PJ, van der Velpen V, Berends L, Jennings A, Feelisch M, Umpleby AM et al (2019) Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized con-trolled trial. Am J Clin Nutr 109(6):1535–1545. https://doi.org/10.1093/ajcn/nqy380

    Article  PubMed  PubMed Central  Google Scholar 

  17. Poulsen NB, Lambert MNT, Jeppesen PB (2020) The effect of plant derived bioactive compounds on inflammation: a systematic review and meta-analysis. Mol Nutr Food Res 64(18):e2000473. https://doi.org/10.1002/mnfr.202000473

    Article  CAS  PubMed  Google Scholar 

  18. McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95:454–464. https://doi.org/10.3945/ajcn.111.016634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P et al (2012) Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr 96:781–788. https://doi.org/10.3945/ajcn.112.042036

    Article  CAS  PubMed  Google Scholar 

  20. Amiot MJ, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17(7):573–586. https://doi.org/10.1111/obr.12409

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Ling W, Du Z, Chen Y, Li D, Deng S, Liu Z, Yang L (2017) Effects of anthocyanins on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 8(5):684–693. https://doi.org/10.3945/an.116.014852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu L, Tian Z, Chen H, Zhao Y, Yang Y (2021) Anthocyanins, anthocyanin-rich berries, and cardiovascular risks: systematic review and meta-analysis of 44 randomized controlled trials and 15 prospective cohort studies. Front Nutr 8:747884. https://doi.org/10.3389/fnut.2021.747884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Curtis PJ, Berends L, van der Velpen V, Jennings A, Haag L, Chandra P, Kay CD, Rimm EB, Cassidy A (2022) Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin Nutr 41(1):165–176. https://doi.org/10.1016/j.clnu.2021.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson SA, Navaei N, Pourafshar S, Jaime SJ, Akhavan NS, Alvarez-Alvarado S et al (2020) Effects of montmorency tart cherry juice consumption on cardiometabolic biomarkers in adults with metabolic syndrome: a randomized controlled pilot trial. J Med Food 23(12):1238–1247. https://doi.org/10.1089/jmf.2019.0240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting system-atic reviews and meta-analysis of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  26. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2021) Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane. www.training.cochrane.org/handbook

  27. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  28. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  29. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28(2):105–114. https://doi.org/10.1016/j.cct.2006.04.004

    Article  PubMed  Google Scholar 

  30. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  31. Pedro-Botet J, Rodríguez-Padial L, Brotons C, Esteban-Salán M, García-Lerín A, Pintó X, Lekuona I, Ordóñez-Llanos J (2018) Homogenization of the lipid profile values. Clin Investig Arterioscler 30(1):36–48. https://doi.org/10.1016/j.arteri.2017.12.001

    Article  PubMed  Google Scholar 

  32. Sterne JA, Egger M, Smith GD (2001) Systematic reviews in health care: investigating and dealing with publication and other biases in meta-analysis. BMJ 323(7304):101–105. https://doi.org/10.1136/bmj.323.7304.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926. https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  34. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B et al (2020) GRADE Working Group. GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 119:126–135. https://doi.org/10.1016/j.jclinepi.2019.10.014

    Article  PubMed  Google Scholar 

  35. Balshem H, Helfand M, Schunermann HJ, Oxman AD, Kunz R, Brozek J et al (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64(4):401–406. https://doi.org/10.1016/j.jclinepi.2010.07.015

    Article  PubMed  Google Scholar 

  36. Basu A, Fu DX, Wilkinson M, Simmons B, Wu M, Betts NM, Du M, Lyons TJ (2010) Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr Res 30(7):462–469. https://doi.org/10.1016/j.nutres.2010.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140(9):1582–1587. https://doi.org/10.3945/jn.110.124701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ (2011) Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res 31(3):190–196. https://doi.org/10.1016/j.nutres.2011.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Desai T, Roberts M, Bottoms L (2019) Effects of Montmorency tart cherry supplementation on cardio-metabolic markers in metabolic syndrome participants: a pilot study. J Funct Foods 57:286–298. https://doi.org/10.1016/j.jff.2019.04.005

    Article  CAS  Google Scholar 

  40. de Mello VD, Lankinen MA, Lindström J, Puupponen-Pimiä R, Laaksonen DE, Pihlajamäki J et al (2017) Fasting serum hippuric acid is elevated after bilberry (Vaccinium myrtillus) consumption and associates with improvement of fasting glucose levels and insulin secretion in persons at high risk of developing type 2 diabetes. Mol Nutr Food Res 61(9):1700019. https://doi.org/10.1002/mnfr.201700019

    Article  CAS  Google Scholar 

  41. Gurrola-Díaz CM, García-López PM, Sánchez-Enríquez S, Troyo-Sanromán R, Andrade-González I, Gómez-Leyva JF (2010) Effects of Hibiscus sabdariffa extract powder and preventive treatment (diet) on the lipid profiles of patients with metabolic syn-drome (MeSy). Phytomedicine 17(7):500–505. https://doi.org/10.1016/j.phymed.2009.10.014

    Article  PubMed  Google Scholar 

  42. Jeong HS, Hong SJ, Lee TB, Kwon JW, Jeong JT, Joo HJ et al (2014) Effects of black raspberry on lipid profiles and vascular endo-thelial function in patients with metabolic syndrome. Phytother Res 28(10):1492–1498. https://doi.org/10.1002/ptr.5154

    Article  PubMed  Google Scholar 

  43. Kim H, Simbo SY, Fang C, McAlister L, Roque A, Banerjee N et al (2018) Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct 9(6):3097–3103. https://doi.org/10.1039/C8FO00595H

    Article  CAS  PubMed  Google Scholar 

  44. Puupponen-Pimiä R, Seppänen-Laakso T, Kankainen M, Maukonen J, Törrönen R, Kolehmainen M et al (2013) Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol Nutr Food Res 57(12):2258–2263. https://doi.org/10.1002/mnfr.201300280

    Article  CAS  PubMed  Google Scholar 

  45. Stull AJ, Cash KC, Champagne CM, Gupta AK, Boston R, Beyl RA et al (2015) Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients 7(6):4107–4123. https://doi.org/10.3390/nu7064107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fabroni S, Ballistreri G, Amenta M, Romeo FV, Rapisarda P (2016) Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. J Sci Food Agric 96(14):4713–4723. https://doi.org/10.1002/jsfa.7708

    Article  CAS  PubMed  Google Scholar 

  47. Wu YHS, Chiu CH, Yang DJ, Lin YL, Tseng JK, Chen YC (2013) Inhibitory effects of litchi (Litchi chinensis Sonn.) flower-water extracts on lipase activity and diet-induced obesity. J Funct Foods 5(2):923–929. https://doi.org/10.1016/j.jff.2013.02.002

    Article  CAS  Google Scholar 

  48. Park S, Kang S, Jeong DY, Jeong SY, Park JJ, Yun HS (2015) Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes Nutr 10(2):6. https://doi.org/10.1007/s12263-015-0455-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sato D, Kusunoki M, Seino N, Nishina A, Feng Z, Tsutsumi K, Nakamura T (2015) Black soybean extract reduces fatty acid contents in subcutaneous, but not in visceral adipose triglyceride in high-fat fed rats. Int J Food Sci Nutr 66(5):539–545. https://doi.org/10.3109/09637486.2015.1028907

    Article  CAS  PubMed  Google Scholar 

  50. Xie L, Su H, Sun C, Zheng X, Chen W (2018) Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol 72:13–24. https://doi.org/10.1016/j.tifs.2017.12.002

    Article  CAS  Google Scholar 

  51. Haswell C, Ali A, Page R, Hurst R, Rutherfurd-Markwick K (2021) Potential of beetroot and blackcurrant compounds to improve metabolic syndrome risk factors. Metabolites 11(6):338. https://doi.org/10.3390/metabo11060338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodarahmi R, Tewari D, Momtaz S (2018) Anthocyanins in the management of metabolic syndrome: a pharmacological and biopharmaceutical review. Front Pharmacol 4(9):1310. https://doi.org/10.3389/fphar.2018.01310

    Article  CAS  Google Scholar 

  53. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S et al (2010) Heart disease and stroke statisticse 2010 update: a report from the American Heart Association. Circulation 23(7):948e54. 121. https://doi.org/10.1161/CIRCULATIONAHA.109.192667

    Article  Google Scholar 

  54. Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H et al (2004) Bioavailability and antioxidant activity of tea fla-vanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 80:1558–1564. https://doi.org/10.1093/ajcn/80.6.1558

    Article  CAS  PubMed  Google Scholar 

  55. Peters U, Poole C, Arab L (2001) Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 154:495–503. https://doi.org/10.1093/aje/154.6.495

    Article  CAS  PubMed  Google Scholar 

  56. Upton R (2001) Bilberry fruit Vaccinium myrtillus L. In: Standards of analysis, quality control, and therapeutics. American Herbal Pharmacopoeia and Therapeutic Compendium, Santa Cruz

  57. Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9(9):3312–3319

    CAS  PubMed  Google Scholar 

  58. Chow HH, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM, Celaya CA, Rodney SR, Hara Y, Alberts DS (2005) Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 11(12):4627–4633. https://doi.org/10.1158/1078-0432.CCR-04-2549

    Article  CAS  PubMed  Google Scholar 

  59. Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46:508–520. https://doi.org/10.1016/j.foodchem.2016.05.122

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was obtained to conduct this systematic review and meta-analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FA-Q, HG-E. Data curation: WS-L, JM. Formal analysis: FA-Q, AB-P. Methodology: HG-E, AB-P, WS-L. Supervision: FA-Q, LP, JFL-G. Writing-original draft: FA-Q, WS-L, JM, LP, JFL-G. Writing- review and editing: FA-Q, AB-P, HG-E, WS-L, JM, LP, JFL-G.

Corresponding author

Correspondence to Héctor Gutiérrez-Espinoza.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya-Quintanilla, F., Beatriz-Pizarro, A., Sepúlveda-Loyola, W. et al. Effectiveness of anthocyanins rich foods on cardiometabolic factors in individuals with metabolic syndrome: a systematic review and meta-analysis. Eur J Nutr 62, 1923–1940 (2023). https://doi.org/10.1007/s00394-023-03142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03142-8

Keywords

Navigation