Skip to main content
Log in

Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

New dietary proteins are currently introduced to replace traditional animal protein sources. However, not much is known about their bioaccessibility and ability to stimulate muscle protein synthesis compared to the traditional protein sources. We aimed to compare effects of ingesting a protein bolus (0.25 g/kg fat free mass) of either cricket (insect), pea, or whey protein on circulating amino acid levels and activation of the mTORC1 signaling pathway in the skeletal muscle at rest and after exercise.

Methods

In a randomized parallel controlled trial, young males (n = 50) performed a one-legged resistance exercise followed by ingestion of one of the three protein sources. Blood samples were collected before and in the following 4 h after exercise. Muscle biopsies were obtained at baseline and after 3 h from the non-exercised and exercised leg.

Results

Analysis of blood serum showed a significantly higher concentration of amino acids after ingestion of whey protein compared to cricket and pea protein. No difference between protein sources in activation of the mTORC1 signaling pathway was observed either at rest or after exercise.

Conclusion

Amino acid blood concentration after protein ingestion was higher for whey than pea and cricket protein, whereas activation of mTORC1 signaling pathway at rest and after exercise did not differ between protein sources.

Trial registration number

Clinicaltrials.org ID NCT04633694.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 96(6):1454–1464. https://doi.org/10.3945/ajcn.112.037556

    Article  CAS  PubMed  Google Scholar 

  2. Morton RW, Murphy KT, McKellar SR, Schoenfeld BJ, Henselmans M, Helms E, Aragon AA, Devries MC, Banfield L, Krieger JW, Phillips SM (2018) A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 52(6):376–384. https://doi.org/10.1136/bjsports-2017-097608

    Article  PubMed  Google Scholar 

  3. Moore DR (2021) Protein requirements for master athletes: just older versions of their younger selves. Sports Med. https://doi.org/10.1007/s40279-021-01510-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J (2017) International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr 14(1):20. https://doi.org/10.1186/s12970-017-0177-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Vliet S, Burd NA, van Loon LJ (2015) The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J Nutr 145(9):1981–1991. https://doi.org/10.3945/jn.114.204305

    Article  PubMed  Google Scholar 

  6. Phillips SM (2016) The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr Metab 13:64. https://doi.org/10.1186/s12986-016-0124-8

    Article  CAS  Google Scholar 

  7. Burd NA, Beals JW, Martinez IG, Salvador AF, Skinner SK (2019) Food-first approach to enhance the regulation of post-exercise skeletal muscle protein synthesis and remodeling. Sports Med 49(Suppl 1):59–68. https://doi.org/10.1007/s40279-018-1009-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38(5):1533–1539. https://doi.org/10.1007/s00726-009-0377-x

    Article  CAS  PubMed  Google Scholar 

  9. Tang JE, Phillips SM (2009) Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 12(1):66–71. https://doi.org/10.1097/MCO.0b013e32831cef75

    Article  CAS  PubMed  Google Scholar 

  10. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107(3):987–992. https://doi.org/10.1152/japplphysiol.00076.2009

    Article  CAS  PubMed  Google Scholar 

  11. Devries MC, Phillips SM (2015) Supplemental protein in support of muscle mass and health: advantage whey. J Food Sci 80(Suppl 1):A8-a15. https://doi.org/10.1111/1750-3841.12802

    Article  CAS  PubMed  Google Scholar 

  12. Sranacharoenpong K, Soret S, Harwatt H, Wien M, Sabate J (2015) The environmental cost of protein food choices. Public Health Nutr 18(11):2067–2073. https://doi.org/10.1017/s1368980014002377

    Article  PubMed  Google Scholar 

  13. Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, van Loon LJC (2018) Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50(12):1685–1695. https://doi.org/10.1007/s00726-018-2640-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scholz-Ahrens KE, Ahrens F, Barth CA (2020) Nutritional and health attributes of milk and milk imitations. Eur J Nutr 59(1):19–34. https://doi.org/10.1007/s00394-019-01936-3

    Article  PubMed  Google Scholar 

  15. Churchward-Venne TA, Pinckaers PJM, van Loon JJA, van Loon LJC (2017) Consideration of insects as a source of dietary protein for human consumption. Nutr Rev 75(12):1035–1045. https://doi.org/10.1093/nutrit/nux057

    Article  PubMed  Google Scholar 

  16. Rumpold BA, Schluter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823. https://doi.org/10.1002/mnfr.201200735

    Article  CAS  PubMed  Google Scholar 

  17. Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, van Loon JJA, Verdijk LB, van Loon LJC (2021) Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr. https://doi.org/10.1093/ajcn/nqab115

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vangsoe MT, Joergensen MS, Heckmann LL, Hansen M (2018) Effects of insect protein supplementation during resistance training on changes in muscle mass and strength in young men. Nutrients 10(3):335. https://doi.org/10.3390/nu10030335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vangsoe MT, Thogersen R, Bertram HC, Heckmann LL, Hansen M (2018) Ingestion of insect protein isolate enhances blood amino acid concentrations similar to soy protein in a human trial. Nutrients 10(10):1357. https://doi.org/10.3390/nu10101357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, Phillips SM (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 70(1):57–62. https://doi.org/10.1093/gerona/glu103

    Article  CAS  PubMed  Google Scholar 

  21. Moro T, Brightwell CR, Velarde B, Fry CS, Nakayama K, Sanbongi C, Volpi E, Rasmussen BB (2019) Whey protein hydrolysate increases amino acid uptake, mTORC1 signaling, and protein synthesis in skeletal muscle of healthy young men in a randomized crossover trial. J Nutr 149(7):1149–1158. https://doi.org/10.1093/jn/nxz053

    Article  PubMed  PubMed Central  Google Scholar 

  22. Phillips SM, Chevalier S, Leidy HJ (2016) Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab 41(5):565–572. https://doi.org/10.1139/apnm-2015-0550%M26960445

    Article  CAS  PubMed  Google Scholar 

  23. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, Ferrando AA, Wolfe RR (2004) Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 286(3):E321-328. https://doi.org/10.1152/ajpendo.00368.2003

    Article  CAS  PubMed  Google Scholar 

  24. Tipton KD, Gurkin BE, Matin S, Wolfe RR (1999) Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem 10(2):89–95. https://doi.org/10.1016/s0955-2863(98)00087-4

    Article  CAS  PubMed  Google Scholar 

  25. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78(2):250–258. https://doi.org/10.1093/ajcn/78.2.250

    Article  CAS  PubMed  Google Scholar 

  26. Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 135(3):376–382. https://doi.org/10.1093/jn/135.3.376

    Article  CAS  PubMed  Google Scholar 

  27. Meyer-Rochow VB, Gahukar RT, Ghosh S, Jung C (2021) Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods 10(5):1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang N, Hatcher DW, Gawalko EJ (2008) Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chem 111(1):132–138. https://doi.org/10.1016/j.foodchem.2008.03.047

    Article  CAS  Google Scholar 

  29. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E, Rasmussen BB (2007) Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol 582(Pt 2):813–823. https://doi.org/10.1113/jphysiol.2007.134593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Hulst G, Masschelein E, De Bock K (2021) Dampened muscle mTORC1 response following ingestion of high-quality plant-based protein and insect protein compared to whey. Nutrients 13(5):1396

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weijzen MEG, van Gassel RJJ, Kouw IWK, Trommelen J, Gorissen SHM, van Kranenburg J, Goessens JPB, van de Poll MCG, Verdijk LB, van Loon LJC (2021) Ingestion of free amino acids compared with an equivalent amount of intact protein results in more rapid amino acid absorption and greater postprandial plasma amino acid availability without affecting muscle protein synthesis rates in young adults in a double-blind randomized trial. J Nutr. https://doi.org/10.1093/jn/nxab305

  32. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294(2):E392-400. https://doi.org/10.1152/ajpendo.00582.2007

    Article  CAS  PubMed  Google Scholar 

  33. Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E, Rasmussen BB (2008) Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging. J Appl Physiol 104(5):1452–1461. https://doi.org/10.1152/japplphysiol.00021.2008

    Article  CAS  PubMed  Google Scholar 

  34. Glynn EL, Fry CS, Drummond MJ, Dreyer HC, Dhanani S, Volpi E, Rasmussen BB (2010) Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol Regul Integr Comp Physiol 299(2):R533-540. https://doi.org/10.1152/ajpregu.00077.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88(2):386–392. https://doi.org/10.1152/jappl.2000.88.2.386

    Article  CAS  PubMed  Google Scholar 

  36. Børsheim E, Tipton KD, Wolf SE, Wolfe RR (2002) Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab 283(4):E648-657. https://doi.org/10.1152/ajpendo.00466.2001

    Article  PubMed  Google Scholar 

  37. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72(1):96–105. https://doi.org/10.1093/ajcn/72.1.96

    Article  PubMed  Google Scholar 

  38. Bell JA, Fujita S, Volpi E, Cadenas JG, Rasmussen BB (2005) Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. Am J Physiol-Endocrinol Metab 289(6):E999–E1006. https://doi.org/10.1152/ajpendo.00170.2005

    Article  CAS  PubMed  Google Scholar 

  39. Bennet WM, Connacher AA, Scrimgeour CM, Jung RT, Rennie MJ (1990) Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am J Physiol-Endocrinol Metab 259(2):E185–E194. https://doi.org/10.1152/ajpendo.1990.259.2.E185

    Article  CAS  Google Scholar 

  40. Biolo G, Declan Fleming RY, Wolfe RR (1995) Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Investig 95(2):811–819. https://doi.org/10.1172/JCI117731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E (2006) Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol-Endocrinol Metab 291(4):E745–E754. https://doi.org/10.1152/ajpendo.00271.2005

    Article  CAS  PubMed  Google Scholar 

  42. Yoon MS (2016) The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients 8(7):405. https://doi.org/10.3390/nu8070405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Investig 80(1):1–6. https://doi.org/10.1172/JCI113033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ (2010) Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 92(5):1080–1088. https://doi.org/10.3945/ajcn.2010.29819

    Article  CAS  PubMed  Google Scholar 

  45. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB (2009) Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol 106(4):1374–1384. https://doi.org/10.1152/japplphysiol.91397.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoon M-S (2017) mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol. https://doi.org/10.3389/fphys.2017.00788

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 1(1):11. https://doi.org/10.1186/2044-5040-1-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dalgaard LB, Dalgas U, Andersen JL, Rossen NB, Møller AB, Stødkilde-Jørgensen H, Jørgensen JO, Kovanen V, Couppé C, Langberg H, Kjær M, Hansen M (2019) Influence of oral contraceptive use on adaptations to resistance training. Front Physiol 10:824. https://doi.org/10.3389/fphys.2019.00824

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dam TV, Dalgaard LB, Ringgaard S, Johansen FT, Bisgaard Bengtsen M, Mose M, Lauritsen KM, Ørtenblad N, Gravholt CH, Hansen M (2020) transdermal estrogen therapy improves gains in skeletal muscle mass after 12 weeks of resistance training in early postmenopausal women. Front Physiol 11:596130. https://doi.org/10.3389/fphys.2020.596130

    Article  PubMed  Google Scholar 

  50. Hansen M, Skovgaard D, Reitelseder S, Holm L, Langbjerg H, Kjaer M (2012) Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women. J Gerontol A Biol Sci Med Sci 67(10):1005–1013. https://doi.org/10.1093/gerona/gls007

    Article  CAS  PubMed  Google Scholar 

  51. Gorissen SHM, Burd NA, Kramer IF, van Kranenburg J, Gijsen AP, Rooyackers O, van Loon LJC (2017) Co-ingesting milk fat with micellar casein does not affect postprandial protein handling in healthy older men. Clin Nutr 36(2):429–437. https://doi.org/10.1016/j.clnu.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  52. Church DD, Hirsch KR, Park S, Kim I-Y, Gwin JA, Pasiakos SM, Wolfe RR, Ferrando AA (2020) Essential amino acids and protein synthesis: insights into maximizing the muscle and whole-body response to feeding. Nutrients 12(12):3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walker DK, Dickinson JM, Timmerman KL, Drummond MJ, Reidy PT, Fry CS, Gundermann DM, Rasmussen BB (2011) Exercise, amino acids, and aging in the control of human muscle protein synthesis. Med Sci Sports Exerc 43(12):2249–2258. https://doi.org/10.1249/MSS.0b013e318223b037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Data were generated though accessing research infrastructure at Aarhus University, including FOODHAY (Food and Health Open Innovation Laboratory, Danish Roadmap for Research Infrastructure). The authors thank Janni Mosgaard Jensen and Gitte Kaiser Hartvigsen for technical support during the experimental days and for western blotting analysis.

Funding

This research was supported by Fonden til Lægevidenskabens Fremme, Copenhagen, Denmark and Beckett-fonden, Denmark (19–2-4811). The present study was part of Sofie Kaas Lanng’s PhD project, which was funded by CiFOOD, Centre for Innovative Food Research, Aarhus University and HCB’s Eliteforsk grant (6161-00016B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Christine Bertram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanng, S.K., Oxfeldt, M., Pedersen, S.S. et al. Influence of protein source (cricket, pea, whey) on amino acid bioavailability and activation of the mTORC1 signaling pathway after resistance exercise in healthy young males. Eur J Nutr 62, 1295–1308 (2023). https://doi.org/10.1007/s00394-022-03071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-03071-y

Keywords

Navigation