Skip to main content

Advertisement

Log in

Wholegrain intake, growth and metabolic markers in Danish infants and toddlers: a longitudinal study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Wholegrain intake is linked to lower risk of lifestyle diseases, but little is known about its role in growth and metabolic health during the first years of life. We characterized wholegrain and dietary fibre intake in 439 Danish children at 9 and 36 months of age and explored associations with height z-scores (HAZ), body mass index z-scores (BMIZ) and metabolic markers.

Methods

We used pooled data from two infant cohorts and estimated intakes of total wholegrain, dietary fibre and wholegrain subtypes from 7-day dietary records. Associations with HAZ, BMIZ and non-fasting plasma low-density (LDLC) and high-density-lipoprotein cholesterol, triacylglycerol, insulin and glucose were analysed in mixed models, adjusted for potential confounders.

Results

Median (25th, 75th percentile) wholegrain intake was 7.5 (4.9, 10.5) and 6.5 (4.6, 9.0) g/MJ at 9 and 36 months. Neither wholegrain nor dietary fibre intake were associated with HAZ (P ≥ 0.09). At 36 months, wholegrain intake was inversely associated with LDLC (P = 0.05) and directly with glucose (P < 0.001). In secondary analyses, wholegrain rye was inversely associated with glucose at 9 months and insulin at 36 months (both P ≤ 0.03). Oat and wheat wholegrain were directly associated with glucose (both P ≤ 0.01) and wheat with BMIZ (P = 0.02) at 36 months.

Conclusion

Danish infants and toddlers have high intakes of wholegrain and dietary fibre, with no indication of compromised growth. In line with studies in adults, wholegrain intake was inversely associated with LDLC. The observed direct association between wholegrain intake and plasma glucose and associations with wholegrain subtypes should be investigated further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Upon request, the research data can be shared with editors and reviewers in a de-identified form for verification of the research results.

References

  1. Aune D, Norat T, Romundstad P, Vatten LJ (2013) Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 28(11):845–858. https://doi.org/10.1007/s10654-013-9852-5

    Article  CAS  PubMed  Google Scholar 

  2. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T (2016) Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 353:i2716. https://doi.org/10.1136/bmj.i2716

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maki KC, Palacios OM, Koecher K, Sawicki CM, Livingston KA, Bell M, Nelson Cortes H, McKeown NM (2019) The relationship between whole grain intake and body weight: results of meta-analyses of observational studies and randomized controlled trials. Nutrients. https://doi.org/10.3390/nu11061245

    Article  PubMed  PubMed Central  Google Scholar 

  4. Molander E, Virtanen S, Thorgeisdottir H, Aarum AKO, Mattisson I (2013) Nordic nutrition recommendations 2012 integrating nutrition and physical activity. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  5. Services. USDoAaUSDoHaH Dietary Guidelines for Americans, 2020–2025. 9th Edition. December 2020

  6. WholEUGrain (2021) Whole Grain: definition, evidence base review, sustainability aspects and considerations for a dietary guideline. In: Lourenço S (Ed) WholEUGrain: Copenhagen

  7. Meynier A, Chanson-Rollé A, Riou E (2020) Main factors influencing whole grain consumption in children and adults-a narrative review. Nutrients. https://doi.org/10.3390/nu12082217

    Article  PubMed  PubMed Central  Google Scholar 

  8. McGill CR, Fulgoni VL, Devareddy L (2015) Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National Health and Nutrition Examination Survey 2001–2010. Nutrients 7(2):1119–1130. https://doi.org/10.3390/nu7021119

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mann KD, Pearce MS, McKevith B, Thielecke F, Seal CJ (2015) Low whole grain intake in the UK: results from the National Diet and Nutrition Survey rolling programme 2008–2011. Br J Nutr 113(10):1643–1651. https://doi.org/10.1017/S0007114515000422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mejborn H, Ygil K, Fagt S, Trolle E, Kørup K, Christensen T (2014) Danskernes fuldkornsindtag 2011–2013 (Wholegrain intake in Denmark 2011–2013)

  11. Andersen LB, Mølgaard C, Ejlerskov KT, Trolle E, Michaelsen KF, Bro R, Pipper CB (2015) Development of dietary patterns spanning infancy and toddlerhood: relation to body size, composition and metabolic risk markers at three years. AIMS Public Health 2(3):332–357. https://doi.org/10.3934/publichealth.2015.3.332

    Article  PubMed  PubMed Central  Google Scholar 

  12. Papanikolaou Y, Fulgoni VL (2019) Grain foods in US infants are associated with greater nutrient intakes, improved diet quality and increased consumption of recommended food groups. Nutrients. https://doi.org/10.3390/nu11122840

    Article  PubMed  PubMed Central  Google Scholar 

  13. Freeman V, van’t Hof M, Haschke F (2000) Patterns of milk and food intake in infants from birth to age 36 months: the Euro-growth study. J Pediatr Gastroenterol Nutr 31(Suppl 1):S76-85. https://doi.org/10.1097/00005176-200007001-00008

    Article  PubMed  Google Scholar 

  14. Hassan A, Devenish G, Golley RK, Ha D, Do LG, Scott JA (2020) Sources and determinants of wholegrain intake in a cohort of Australian children aged 12–14 months. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17249229

    Article  PubMed  PubMed Central  Google Scholar 

  15. Desmond MA, Sobiecki JG, Jaworski M, Płudowski P, Antoniewicz J, Shirley MK, Eaton S, Książyk J, Cortina-Borja M, De Stavola B, Fewtrell M, Wells JCK (2021) Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr 113(6):1565–1577. https://doi.org/10.1093/ajcn/nqaa445

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aggett PJ, Agostoni C, Axelsson I, Edwards CA, Goulet O, Hernell O, Koletzko B, Lafeber HN, Micheli JL, Michaelsen KF, Rigo J, Szajewska H, Weaver LT, Nutrition ECo (2003) Nondigestible carbohydrates in the diets of infants and young children: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 36(3):329–337. https://doi.org/10.1097/00005176-200303000-00006

    Article  CAS  PubMed  Google Scholar 

  17. Dagnelie PC, van Staveren WA, Vergote FJ, Burema J, van’t Hof MA, van Klaveren JD, Hautvast JG (1989) Nutritional status of infants aged 4–18 months on macrobiotic diets and matched omnivorous control infants: a population-based mixed-longitudinal study. II. Growth and psychomotor development. Eur J Clin Nutr 43(5):325–338

    CAS  PubMed  Google Scholar 

  18. Klerks M, Bernal MJ, Roman S, Bodenstab S, Gil A, Sanchez-Siles LM (2019) Infant cereals: current status, challenges, and future opportunities for whole grains. Nutrients. https://doi.org/10.3390/nu11020473

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hollænder PL, Ross AB, Kristensen M (2015) Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 102(3):556–572. https://doi.org/10.3945/ajcn.115.109165

    Article  CAS  PubMed  Google Scholar 

  20. Marventano S, Vetrani C, Vitale M, Godos J, Riccardi G, Grosso G (2017) Whole grain intake and glycaemic control in healthy subjects: a systematic review and meta-analysis of randomized controlled trials. Nutrients. https://doi.org/10.3390/nu9070769

    Article  PubMed  PubMed Central  Google Scholar 

  21. Suhr J, Vuholm S, Iversen KN, Landberg R, Kristensen M (2017) Wholegrain rye, but not wholegrain wheat, lowers body weight and fat mass compared with refined wheat: a 6-week randomized study. Eur J Clin Nutr 71(8):959–967. https://doi.org/10.1038/ejcn.2017.12

    Article  CAS  PubMed  Google Scholar 

  22. Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrügger S, Mærkedahl RB, Bahl MI, Lind MV, Nielsen RL, Frøkiær H, Gøbel RJ, Landberg R, Ross AB, Brix S, Holck J, Meyer AS, Sparholt MH, Christensen AF, Carvalho V, Hartmann B, Holst JJ, Rumessen JJ, Linneberg A, Sicheritz-Pontén T, Dalgaard MD, Blennow A, Frandsen HL, Villas-Bôas S, Kristiansen K, Vestergaard H, Hansen T, Ekstrøm CT, Ritz C, Nielsen HB, Pedersen OB, Gupta R, Lauritzen L, Licht TR (2019) Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68(1):83–93. https://doi.org/10.1136/gutjnl-2017-314786

    Article  CAS  PubMed  Google Scholar 

  23. Pol K, Christensen R, Bartels EM, Raben A, Tetens I, Kristensen M (2013) Whole grain and body weight changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 98(4):872–884. https://doi.org/10.3945/ajcn.113.064659

    Article  CAS  PubMed  Google Scholar 

  24. Sandberg JC, Björck IME, Nilsson AC (2018) Impact of rye-based evening meals on cognitive functions, mood and cardiometabolic risk factors: a randomized controlled study in healthy middle-aged subjects. Nutr J 17(1):102. https://doi.org/10.1186/s12937-018-0412-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Connolly ML, Tzounis X, Tuohy KM, Lovegrove JA (2016) Hypocholesterolemic and prebiotic effects of a whole-grain oat-based granola breakfast cereal in a cardio-metabolic “At Risk” population. Front Microbiol 7:1675. https://doi.org/10.3389/fmicb.2016.01675

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koo HC, Poh BK, Abd Talib R (2018) The GReat-Child™ Trial: a quasi-experimental intervention on whole grains with healthy balanced diet to manage childhood obesity in Kuala Lumpur, Malaysia. Nutrients. https://doi.org/10.3390/nu10020156

    Article  PubMed  PubMed Central  Google Scholar 

  27. Damsgaard CT, Biltoft-Jensen A, Tetens I, Michaelsen KF, Lind MV, Astrup A, Landberg R (2017) Whole-grain intake, reflected by dietary records and biomarkers, is inversely associated with circulating insulin and other cardiometabolic markers in 8- to 11-year-old children. J Nutr 147(5):816–824. https://doi.org/10.3945/jn.116.244624

    Article  CAS  PubMed  Google Scholar 

  28. Laitinen TT, Nuotio J, Juonala M, Niinikoski H, Rovio S, Viikari JSA, Rönnemaa T, Magnussen CG, Jokinen E, Lagström H, Jula A, Simell O, Raitakari OT, Pahkala K (2018) Success in achieving the targets of the 20-year infancy-onset dietary intervention: association with insulin sensitivity and serum lipids. Diabetes Care 41(10):2236–2244. https://doi.org/10.2337/dc18-0869

    Article  CAS  PubMed  Google Scholar 

  29. Fulgoni VL, Brauchla M, Fleige L, Chu Y (2020) Association of whole-grain and dietary fiber intake with cardiometabolic risk in children and adolescents. Nutr Health 26(3):243–251. https://doi.org/10.1177/0260106020928664

    Article  CAS  PubMed  Google Scholar 

  30. Hajihashemi P, Azadbakht L, Hashemipour M, Kelishadi R, Saneei P, Esmaillzadeh A (2021) Whole grain intake favorably affects blood glucose and serum triacylglycerols in overweight and obese children: a randomized controlled crossover clinical trial. Nutrition 87–88:111200. https://doi.org/10.1016/j.nut.2021.111200

    Article  CAS  PubMed  Google Scholar 

  31. Juhola J, Magnussen CG, Viikari JS, Kähönen M, Hutri-Kähönen N, Jula A, Lehtimäki T, Åkerblom HK, Pietikäinen M, Laitinen T, Jokinen E, Taittonen L, Raitakari OT, Juonala M (2011) Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 159(4):584–590. https://doi.org/10.1016/j.jpeds.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  32. Morrison JA, Friedman LA, Wang P, Glueck CJ (2008) Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25–30 years later. J Pediatr 152(2):201–206. https://doi.org/10.1016/j.jpeds.2007.09.010

    Article  CAS  PubMed  Google Scholar 

  33. Kaikkonen JE, Mikkilä V, Magnussen CG, Juonala M, Viikari JS, Raitakari OT (2013) Does childhood nutrition influence adult cardiovascular disease risk? Insights from the Young Finns Study. Ann Med 45(2):120–128. https://doi.org/10.3109/07853890.2012.671537

    Article  PubMed  Google Scholar 

  34. van Gijssel RM, Braun KV, Kiefte-de Jong JC, Jaddoe VW, Franco OH, Voortman T (2016) Associations between dietary fiber intake in infancy and cardiometabolic health at school age: the generation R study. Nutrients. https://doi.org/10.3390/nu8090531

    Article  PubMed  PubMed Central  Google Scholar 

  35. Larnkjær A, Ong KK, Carlsen EM, Ejlerskov KT, Mølgaard C, Michaelsen KF (2018) The influence of maternal obesity and breastfeeding on infant appetite- and growth-related hormone concentrations: the SKOT cohort studies. Horm Res Paediatr 90(1):28–38. https://doi.org/10.1159/000490114

    Article  CAS  PubMed  Google Scholar 

  36. Madsen AL, Schack-Nielsen L, Larnkjaer A, Mølgaard C, Michaelsen KF (2010) Determinants of blood glucose and insulin in healthy 9-month-old term Danish infants; the SKOT cohort. Diabet Med 27(12):1350–1357. https://doi.org/10.1111/j.1464-5491.2010.03134.x

    Article  CAS  PubMed  Google Scholar 

  37. Renault KM, Nørgaard K, Nilas L, Carlsen EM, Cortes D, Pryds O, Secher NJ (2014) The Treatment of Obese Pregnant Women (TOP) study: a randomized controlled trial of the effect of physical activity intervention assessed by pedometer with or without dietary intervention in obese pregnant women. Am J Obstet Gynecol 210(2):134.e131-139. https://doi.org/10.1016/j.ajog.2013.09.029

    Article  Google Scholar 

  38. Laursen MF, Andersen LB, Michaelsen KF, Mølgaard C, Trolle E, Bahl MI, Licht TR (2016) Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. https://doi.org/10.1128/mSphere.00069-15

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gondolf UH, Tetens I, Hills AP, Michaelsen KF, Trolle E (2012) Validation of a pre-coded food record for infants and young children. Eur J Clin Nutr 66(1):91–96. https://doi.org/10.1038/ejcn.2011.133

    Article  CAS  PubMed  Google Scholar 

  40. Trolle E, Gondolf UH, Ege M, Kørup K, Ygill KH, Christensen T (2013) Danskernes kostvaner Spæd-og småbørn 2006–2007

  41. Biltoft-Jensen A, Damsgaard CT, Andersen EW, Ygil KH, Andersen R, Ege M, Christensen T, Thorsen AV, Tetens I, Wu H, Landberg R (2016) Validation of reported whole-grain intake from a web-based dietary record against plasma alkylresorcinol concentrations in 8- to 11-year-olds participating in a randomized controlled trial. J Nutr 146(2):377–383. https://doi.org/10.3945/jn.115.222620

    Article  CAS  PubMed  Google Scholar 

  42. Black AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24(9):1119–1130

    Article  CAS  Google Scholar 

  43. Henry CJ (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8(7A):1133–1152

    Article  CAS  Google Scholar 

  44. Organization WWH (2010) The WHO Child Growth Standards; Anthro for personal computers, version 3.2.2, 2011: Software for assessing growth and development of the world's children. Geneva:WHO, http://www.who.int/childgrowth/software/en/

  45. Laursen RP, Dalskov SM, Damsgaard CT, Ritz C (2014) Back-transformation of treatment differences—an approximate method. Eur J Clin Nutr 68(2):277–280. https://doi.org/10.1038/ejcn.2013.259

    Article  CAS  PubMed  Google Scholar 

  46. Bates D, Maechler M, Bolker B, SW (2015) Fitting linear mixed-effects models Using lme4. vol 67. J Stat Softw

  47. Andersen LB, Pipper CB, Trolle E, Bro R, Larnkjær A, Carlsen EM, Mølgaard C, Michaelsen KF (2015) Maternal obesity and offspring dietary patterns at 9 months of age. Eur J Clin Nutr 69(6):668–675. https://doi.org/10.1038/ejcn.2014.258

    Article  CAS  PubMed  Google Scholar 

  48. Mejborn H, Biltoft-Jensen A, Trolle E, IT (2008) Fuldkorn. Definition og Vidensgrundlag for Anbefaling af Fuldkornsindtag i Danmark (Whole Grains. Definition and Knowledge Base for the Recommendation of Whole Grain Intake in Denmark). DTU Fødevareinstituttet, Søborg, Denmark

  49. Pedersen AN, Christensen T, Matthiessen J, Knudsen VK, Rosenlund-Sørensen M, Biltoft-Jensen A, Hinsch H-J, Ygil KH, Kørup K, Saxholt E, Trolle E, Søndergaard AB, Fagt S (2015) Danskernes kostvaner 2011–2013 (dietary habits in Denmark 2011–2013)

  50. Alexy U, Zorn C, Kersting M (2010) Whole grain in children’s diet: intake, food sources and trends. Eur J Clin Nutr 64(7):745–751. https://doi.org/10.1038/ejcn.2010.94

    Article  CAS  PubMed  Google Scholar 

  51. Sette S, D’Addezio L, Piccinelli R, Hopkins S, Le Donne C, Ferrari M, Mistura L, Turrini A (2017) Intakes of whole grain in an Italian sample of children, adolescents and adults. Eur J Nutr 56(2):521–533. https://doi.org/10.1007/s00394-015-1097-5

    Article  CAS  PubMed  Google Scholar 

  52. Ak N, Koo HC, Hamid Jan JM, Mohd Nasir MT, Tan SY, Appukutty M, Nurliyana AR, Thielecke F, Hopkins S, Ong MK, Ning C, Tee ES (2015) Whole grain intakes in the diets of malaysian children and adolescents-findings from the mybreakfast study. PLoS ONE 10(10):e0138247. https://doi.org/10.1371/journal.pone.0138247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neo JE, Binte Mohamed Salleh S, Toh YX, How KY, Tee M, Mann K, Hopkins S, Thielecke F, Seal CJ, Brownlee IA (2016) Whole-grain food consumption in Singaporean children aged 6–12 years. J Nutr Sci 5:e33. https://doi.org/10.1017/jns.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bellisle F, Hébel P, Colin J, Reyé B, Hopkins S (2014) Consumption of whole grains in French children, adolescents and adults. Br J Nutr 112(10):1674–1684. https://doi.org/10.1017/S0007114514002670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dagnelie PC, van Dusseldorp M, van Staveren WA, Hautvast JG (1994) Effects of macrobiotic diets on linear growth in infants and children until 10 years of age. Eur J Clin Nutr 48(Suppl 1):S103-111 (discussion S111–102)

    PubMed  Google Scholar 

  56. Sanders TA (1988) Growth and development of British vegan children. Am J Clin Nutr 48(3 Suppl):822–825. https://doi.org/10.1093/ajcn/48.3.822

    Article  CAS  PubMed  Google Scholar 

  57. Choumenkovitch SF, McKeown NM, Tovar A, Hyatt RR, Kraak VI, Hastings AV, Herzog JB, Economos CD (2013) Whole grain consumption is inversely associated with BMI Z-score in rural school-aged children. Public Health Nutr 16(2):212–218. https://doi.org/10.1017/S1368980012003527

    Article  PubMed  Google Scholar 

  58. Leinonen KS, Poutanen KS, Mykkänen HM (2000) Rye bread decreases serum total and LDL cholesterol in men with moderately elevated serum cholesterol. J Nutr 130(2):164–170. https://doi.org/10.1093/jn/130.2.164

    Article  CAS  PubMed  Google Scholar 

  59. Magnusdottir OK, Landberg R, Gunnarsdottir I, Cloetens L, Åkesson B, Rosqvist F, Schwab U, Herzig KH, Hukkanen J, Savolainen MJ, Brader L, Hermansen K, Kolehmainen M, Poutanen K, Uusitupa M, Risérus U, Thorsdottir I (2014) Whole grain rye intake, reflected by a biomarker, is associated with favorable blood lipid outcomes in subjects with the metabolic syndrome–a randomized study. PLoS ONE 9(10):e110827. https://doi.org/10.1371/journal.pone.0110827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eriksen AK, Brunius C, Mazidi M, Hellström PM, Risérus U, Iversen KN, Fristedt R, Sun L, Huang Y, Nørskov NP, Knudsen KEB, Kyrø C, Olsen A, Tjønneland A, Dicksved J, Landberg R (2020) Effects of whole-grain wheat, rye, and lignan supplementation on cardiometabolic risk factors in men with metabolic syndrome: a randomized crossover trial. Am J Clin Nutr 111(4):864–876. https://doi.org/10.1093/ajcn/nqaa026

    Article  PubMed  Google Scholar 

  61. Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RB, Mayer-Davis EJ (2003) Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr 78(5):965–971. https://doi.org/10.1093/ajcn/78.5.965

    Article  CAS  PubMed  Google Scholar 

  62. Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC, Group LBS (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387(10017):475–490. https://doi.org/10.1016/S0140-6736(15)01024-7

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by Independent Research Fund Denmark∣Health and disease. The SKOT-I cohort was funded by The Directorate for Food, Fisheries and Agri Business as part of the project “Complementary and young child feeding (CYCF)—impact on short and long term development and health.” The SKOT-II cohort was supported by grants from the Aase and Ejnar Danielsens Foundation and the Augustinus Foundation and partly by contributions from the research program “Governing Obesity” under the University of Copenhagen Excellence Program for Interdisciplinary Research (www.go.ku.dk).

Author information

Authors and Affiliations

Authors

Contributions

MTBM and CTD designed the study. MTBM performed the statistical analyses. MTBM wrote the paper with help from CTD and had primary responsibility for the final content. ET and ABJ were responsible for developing the food diary, processing the dietary intake data and estimating wholegrain intake. LL provided sparring in the interpretation of results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marie T. B. Madsen.

Ethics declarations

Conflict of interest

None of the authors reported a conflict of interest related to the study.

Clinical trial and study registration

The studies were registered at clinicaltrials.gov as NCT02170428 and NCT02377973.

Ethics approval

The trials were conducted in accordance with the Declaration of Helsinki and approved by The Committees on Biomedical Research Ethics for the Capital Region of Denmark; SKOT I: H-KF-2007-0003; SKOT II: H-3-2010-122.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, M.T.B., Biltoft-Jensen, A.P., Trolle, E. et al. Wholegrain intake, growth and metabolic markers in Danish infants and toddlers: a longitudinal study. Eur J Nutr 61, 3545–3557 (2022). https://doi.org/10.1007/s00394-022-02902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02902-2

Keywords

Navigation