Skip to main content

Advertisement

Log in

Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Despite significant advances in the diagnosis and treatment of cancer, the latter still remains a fatal disease due to the lack of prevention, early diagnosis, and effective drugs. Radiotherapy, chemotherapy, and surgery are not only expensive but produce a number of side effects that are detrimental to the patients’ quality of life. Therefore, there is a great need to discover anti-cancer therapies that are specific to cancer cells and affordable, safe, and well tolerated by the patients. Vitamin E is a potential candidate due to its safety. Accumulating evidence on the anti-cancer potency of vitamin E has shifted the focus from tocopherols (TOCs) to tocotrienols (TTs). γ-TT and δ-TT have the highest anti-cancer activities and target common molecular pathways involved in the inhibition of the cell cycle, the induction of apoptosis and autophagy, and the inhibition of invasion, metastasis, and angiogenesis. Future directions should focus on further investigating how γ-TT and δ-TT (solely or in combination) induce anti-cancer molecular pathways when used in the presence of conventional chemotherapeutic drugs. These studies should be carried out in vitro, and promising results and combinations should then be assessed in in vivo experiments and finally in clinical trials. Finally, future research should focus on further evaluating the roles of γ-TT and δ-TT in the chemoprevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. Sailo BL, Banik K, Padmavathi G, Javadi M, Bordoloi D, Kunnumakkara AB (2018) Tocotrienols: the promising analogues of vitamin E for cancer therapeutics. Pharmacol Res 130:259–272. https://doi.org/10.1016/j.phrs.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  3. Ling MT, Luk SU, Al-Ejeh F, Khanna KK (2012) Tocotrienol as a potential anticancer agent. Carcinogenesis 33(2):233–239. https://doi.org/10.1093/carcin/bgr261

    Article  CAS  PubMed  Google Scholar 

  4. Kanchi MM, Rane G, Kumar AP, Shanmugam MK, Sethi G (2017) Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discov Today 22(12):1765–1781. https://doi.org/10.1016/j.drudis.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  5. Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56(1458):650–651

    CAS  PubMed  Google Scholar 

  6. Peh HY, Tan WSD, Liao W, Wong WSF (2016) Associate Editor: Y. Zhang: vitamin E therapy beyond cancer: tocopherol versus tocotrienol. Pharmacol Ther 162:152–169. https://doi.org/10.1016/j.pharmthera.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  7. Mizushina Y, Nakagawa K, Shibata A, Awata Y, Kuriyama I, Shimazaki N, Koiwai O, Uchiyama Y, Sakaguchi K, Miyazawa T, Yoshida H (2006) Inhibitory effect of tocotrienol on eukaryotic DNA polymerase lambda and angiogenesis. Biochem Biophys Res Commun 339(3):949–955

    CAS  PubMed  Google Scholar 

  8. Khan MR, Siddiqui S, Parveen K, Javed S, Diwakar S, Siddiqui WA (2010) Nephroprotective action of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate (K 2 Cr 2 O 7)-induced acute renal injury in rats. Chem Biol Interact 186(2):228–238. https://doi.org/10.1016/j.cbi.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  9. Sen CK, Rink C, Khanna S (2010) Palm oil–derived natural vitamin E α-tocotrienol in brain health and disease. J Am Coll Nutr 29(sup3):314S–323S

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hosomi A, Arita M, Sato Y, Arai H, Inoue K, Kiyose C, Igarashi O, Ueda T (1997) Affinity for a-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409(1):105–108. https://doi.org/10.1016/S0014-5793(97)00499-7

    Article  CAS  PubMed  Google Scholar 

  11. Birringer M, Pfluger P, Kluth D, Landes N, Brigelius-Flohé R (2002) Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J Nutr 132(10):3113–3118

    CAS  PubMed  Google Scholar 

  12. Ahsan H, Ahad A, Iqbal J, Siddiqui WA (2014) Pharmacological potential of tocotrienols: a review. Nutr Metab 11(1):52. https://doi.org/10.1186/1743-7075-11-52

    Article  CAS  Google Scholar 

  13. Abdul-Majeed S, Mohamed N, Soelaiman I (2013) A review on the use of statins and tocotrienols, individually or in combination for the treatment of osteoporosis. Curr Drug Targets 14(13):1579–1590

    CAS  PubMed  Google Scholar 

  14. Abdul-Majeed S, Mohamed N, Soelaiman I (2015) The use of delta-tocotrienol and lovastatin for anti-osteoporotic therapy. Life Sci 125:42–48

    CAS  PubMed  Google Scholar 

  15. Wada S (2012) Cancer preventive effects of vitamin E. Curr Pharm Biotechnol 13(1):156–164

    CAS  PubMed  Google Scholar 

  16. Jiang Q (2017) Natural forms of vitamin E as effective agents for cancer prevention and therapy. Adv. Nutr. 8:850–867

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang Q (2018) Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life. https://doi.org/10.1002/iub.1978

    Article  PubMed  Google Scholar 

  18. Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P (2019) Anticancer properties of tocotrienols: a review of cellular mechanisms and molecular targets. J Cell Physiol 234:1147–1164

    CAS  PubMed  Google Scholar 

  19. Abu-Fayyad A, Kamal MM, Nazzal S, Carroll JL, Dragoi A-M, Cody R, Cardelli J (2018) Development and in vitro characterization of nanoemulsions loaded with paclitaxel/γ-tocotrienol lipid conjugates. Int J Pharm 536(1):146–157. https://doi.org/10.1016/j.ijpharm.2017.11.062

    Article  CAS  PubMed  Google Scholar 

  20. Srivastava JK, Gupta S (2006) Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem Biophys Res Commun 346(2):447–453

    CAS  PubMed  Google Scholar 

  21. Yap WN, Chang PN, Han HY, Lee DTW, Ling MT, Wong YC, Yap YL (2008) Gamma-tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br J Cancer 99(11):1832–1841. https://doi.org/10.1038/sj.bjc.6604763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yap WN, Zaiden N, Tan YL, Ngoh CP, Zhang XW, Wong YC, Ling MT, Yap YL (2010) Id1, inhibitor of differentiation, is a key protein mediating anti-tumor responses of gamma-tocotrienol in breast cancer cells. Cancer Lett 291(2):187–199. https://doi.org/10.1016/j.canlet.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  23. Aggarwal BB, Sundaram C, Prasad S, Kannappan R (2010) Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 80(11):1613–1631. https://doi.org/10.1016/j.bcp.2010.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kannappan R, Ravindran J, Prasad S, Sung B, Yadav VR, Reuter S, Chaturvedi MM, Aggarwal BB (2010) Gamma-tocotrienol promotes TRAIL-induced apoptosis through reactive oxygen species/extracellular signal-regulated kinase/p53-mediated upregulation of death receptors. Mol Cancer Ther 9(8):2196–2207. https://doi.org/10.1158/1535-7163.MCT-10-0277

    Article  CAS  PubMed  Google Scholar 

  25. Cardenas E, Ghosh R (2013) Vitamin E: a dark horse at the crossroad of cancer management. Biochem Pharmacol 86(7):845–852. https://doi.org/10.1016/j.bcp.2013.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun W, Xu W, Liu H, Liu J, Wang Q, Zhou J, Dong F, Chen B (2009) γ-Tocotrienol induces mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells. J Nutr Biochem 20:276–284

    CAS  PubMed  Google Scholar 

  27. Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM, Malafa MP (2015) EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem 26:797–807

    PubMed  PubMed Central  Google Scholar 

  28. Wada S (2009) Chemoprevention of tocotrienols: the mechanism of antiproliferative effects. Forum Nutr 61:204–216. https://doi.org/10.1159/000212752

    Article  CAS  PubMed  Google Scholar 

  29. Galli F, Azzi A (2010) Present trends in vitamin E research. BioFactors 36(1):33–42. https://doi.org/10.1002/biof.75

    Article  CAS  PubMed  Google Scholar 

  30. Catalgol B, Batirel S, Ozer NK (2011) Cellular protection and therapeutic potential of tocotrienols. Curr Pharm Des 17(21):2215–2220

    CAS  PubMed  Google Scholar 

  31. Kannappan R, Gupta SC, Kim JH, Aggarwal BB (2012) Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr 7(1):43–52. https://doi.org/10.1007/s12263-011-0220-3

    Article  CAS  PubMed  Google Scholar 

  32. De Silva L, Chuah LH, Meganathan P, Fu J-Y (2016) Tocotrienol and cancer metastasis. BioFactors 42(2):149–162. https://doi.org/10.1002/biof.1259

    Article  CAS  PubMed  Google Scholar 

  33. Hsieh T, Wu JM (2008) Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and γ-tocotrienol in estrogen receptor-positive MCF-7 breast cancer cells. Int J Oncol 33(4):851–859

    CAS  PubMed  Google Scholar 

  34. Samant G, Wali V, Sylvester P (2010) Anti-proliferative effects of γ-tocotrienol on mammary tumour cells are associated with suppression of cell cycle progression. Cell Prolif 43(1):77–83

    CAS  PubMed  Google Scholar 

  35. Wada S, Satomi Y, Murakoshi M, Noguchi N, Yoshikawa T, Nishino H (2005) Carcinogenesis and cancer prevention: tumor suppressive effects of tocotrienol in vivo and in vitro. Cancer Lett 229:181–191. https://doi.org/10.1016/j.canlet.2005.06.036

    Article  CAS  PubMed  Google Scholar 

  36. Wu S, Ng L (2010) Tocotrienols inhibited growth and induced apoptosis in human HeLa cells through the cell cycle signaling pathway. Integr Cancer Ther 9(1):66–72. https://doi.org/10.1177/1534735409357757

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Wu R, Su Z, Guo Y, Zheng X, Yang CS, Kong A (2017) A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27. J Nutr Biochem 40:155–163. https://doi.org/10.1016/j.jnutbio.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  38. Fernandes NV, Guntipalli PK, Mo H (2010) d-δ-Tocotrienol-mediated cell cycle arrest and apoptosis in human melanoma cells. Anticancer Res 30(12):4937–4944

    CAS  PubMed  Google Scholar 

  39. Ji X, Heamanu A, Goja A, Gupta SV, Wang Z, Sarkar FH (2012) Delta-tocotrienol suppresses Notch-1 pathway by upregulating miR-34a in nonsmall cell lung cancer cells. Int J Cancer 131(11):2668–2677

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hodul PJ, Dong Y, Husain K, Pimiento JM, Chen J, Zhang A, Francois R, Pledger WJ, Coppola D, Sebti SM, Chen D, Malafa MP (2013) Vitamin E δ-tocotrienol induces p27(Kip1)-dependent cell-cycle arrest in pancreatic cancer cells via an E2F-1-dependent mechanism. PLoS One 8(2):e52526. https://doi.org/10.1371/journal.pone.0052526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ye C, Zhao W, Li M, Zhuang J, Yan X, Lu Q, Chang C, Huang X, Zhou J, Xie B, Zhang Z, Yao X, Yan J, Guo H (2015) δ-Tocotrienol induces human bladder cancer cell growth arrest, apoptosis and chemosensitization through inhibition of STAT3 pathway. PLoS One 10(4):e0122712. https://doi.org/10.1371/journal.po

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shibata A, Nakagawa K, Tsuduki T, Miyazawa T (2015) Research Article: δ-Tocotrienol treatment is more effective against hypoxic tumor cells than normoxic cells: potential implications for cancer therapy. J Nutr Biochem 26:832–840. https://doi.org/10.1016/j.jnutbio.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  43. Atia A, Abdullah A (2013) Tocotrienols: molecular aspects beyond its antioxidant activity. JMRP 2:246–250

    Google Scholar 

  44. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22(53):8543

    CAS  PubMed  Google Scholar 

  45. Constantinou C, Papas K, Constantinou A (2009) Caspase-independent pathways of programmed cell death: the unraveling of new targets of cancer therapy? Curr Cancer Drug Targets 9(6):717–728

    CAS  PubMed  Google Scholar 

  46. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770

    CAS  PubMed  Google Scholar 

  47. Wali VB, Bachawal SV, Sylvester PW (2009) ‘Endoplasmic reticulum stress mediates c-tocotrienol-induced apoptosis in mammary tumor cells. Apoptosis 14:1366–1377

    CAS  PubMed  Google Scholar 

  48. Park SK, Sanders BG, Kline K (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signalling. Breast Cancer Res Treat 124:361–375

    CAS  PubMed  Google Scholar 

  49. Patacsil D, Tran AT, Cho YS, Suy S, Saenza F, Malyukovaa I, Ressomb H, Collins SP, Clarke P, Kumar D (2012) Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem 23:93–100

    CAS  PubMed  Google Scholar 

  50. Tiwari RV, Parajuli P, Sylvester PW (2014) γ-Tocotrienol-induced autophagy in malignant mammary cancer cells. Exp Biol Med 239:33–44

    Google Scholar 

  51. Tiwari RV, Parajuli P, Sylvester PW (2015) Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death. Biochem Cell Biol 93:306–320

    CAS  PubMed  Google Scholar 

  52. Comitato R, Guantario B, Leoni G, Nesaretnam K, Ronci MB, Canali R, Virgili F (2016) Tocotrienols induce endoplasmic reticulum stress and apoptosis in cervical cancer cells. Genes Nutr 11:32

    PubMed  PubMed Central  Google Scholar 

  53. Montagnani Marelli M, Marzagalli M, Moretti RM, Beretta G, Casati L, Comitato R, Gravina GL, Festuccia C, Patrizia Limonta (2016) Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress mediated apoptosis in human melanoma cells. Sci Rep 6:30502

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sylvester WP, Ayoub MN (2013) Tocotrienols target PI3K/Akt signaling in anti-breast cancer therapy. Anticancer Agents Med Chem 13(7):1039–1047

    CAS  PubMed  Google Scholar 

  55. McIntyre BS, Briski KP, Gapor A, Sylvester PW (2000) Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells (44544). Proc Soc Exp Biol Med 224(4):292–301

    CAS  PubMed  Google Scholar 

  56. Shah S, Sylvester PW (2004) Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells. Exp Biol Med 229(8):745–755

    CAS  Google Scholar 

  57. Shun M, Yu W, Gapor A, Parsons R, Atkinson J, Sanders BG, Kline K (2004) Pro-apoptotic mechanisms of action of a novel vitamin E analog (α-TEA) and a naturally occurring form of vitamin E (δ-tocotrienol) in MDA-MB-435 human breast cancer cells. Nutr Cancer 48(1):95–105

    CAS  PubMed  Google Scholar 

  58. Loganathan R, Selvaduray KR, Nesaretnam K, Radhakrishnan AK (2013) Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity. Cell Prolif 46(2):203–213. https://doi.org/10.1111/cpr.12014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Comitato R, Leoni G, Canali R, Ambra R, Nesaretnam K, Virgili F (2010) Tocotrienols activity in MCF-7 breast cancer cells: involvement of ERβ signal transduction. Mol Nutr Food Res 54(5):669–678

    CAS  PubMed  Google Scholar 

  60. Khallouki F, Caze-Subra S, Bystricky K, Balaguer P, Poirot M, Silvente-Poirot S (2016) Molecular and biochemical analysis of the estrogenic and proliferative properties of vitamin E compounds. Front Oncol 5:287

    PubMed  PubMed Central  Google Scholar 

  61. Agarwal MK, Agarwal ML, Athar M, Gupta S (2004) Tocotrienol-rich fraction of palm oil activates p53, modulates Bax/Bcl2 ratio and induces apoptosis independent of cell cycle association. Cell Cycle 3(2):205–211

    CAS  PubMed  Google Scholar 

  62. Xu W, Liu J, Liu H, Qi G, Sun X, Sun W, Chen B (2009) Inhibition of proliferation and induction of apoptosis by γ-tocotrienol in human colon carcinoma HT-29 cells. Nutrition 25(5):555–566. https://doi.org/10.1016/j.nut.2008.10.019

    Article  CAS  PubMed  Google Scholar 

  63. Ahn KS, Sethi G, Krishnan K, Aggarwal BB (2007) Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282(1):809–820

    CAS  PubMed  Google Scholar 

  64. Inoue A, Takitani K, Koh M, Kawakami C, Kuno T, Tamai H (2011) Induction of apoptosis by γ-tocotrienol in human cancer cell lines and leukemic blasts from patients: dependency on bid, cytochrome c, and caspase pathway. Nutr Cancer 63(5):763–770. https://doi.org/10.1080/01635581.2011.563030

    Article  CAS  PubMed  Google Scholar 

  65. Wilankar C, Khan NM, Checker R, Sharma D, Patwardhan R, Gota V, Sandur SK, Devasagayam T (2011) γ-Tocotrienol induces apoptosis in human T cell lymphoma through activation of both intrinsic and extrinsic pathways. Curr Pharm Design 17(21):2176–2218

    CAS  Google Scholar 

  66. Rajendran P, Li F, Manu KA, Shanmugam MK, Loo SY, Kumar AP, Sethi G (2011) γ-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br J Pharmacol 163(2):283–298. https://doi.org/10.1111/j.1476-5381.2010.01187.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sakai M, Okabe M, Tachibana H, Yamada K (2006) Research article: apoptosis induction by γ-tocotrienol in human hepatoma Hep3B cells. J Nutr Biochem 17:672–676. https://doi.org/10.1016/j.jnutbio.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  68. Lim S, Loh H, Ting K, Bradshaw TD, Zeenathul NA (2014) Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells. BMC Complement Altern Med 14:469. https://doi.org/10.1186/1472-6882-14-469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hussein D, Mo H (2009) d-δ-Tocotrienol-mediated suppression of proliferation of human PANC-1, MIA PaCA-2 and Bx-PC3 pancreatic carcinoma cells. Pancreas 38(4):e124–e136

    CAS  PubMed  Google Scholar 

  70. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137. https://doi.org/10.1038/35052073

    Article  CAS  PubMed  Google Scholar 

  71. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354

    CAS  PubMed  Google Scholar 

  72. Appert-Collin A, Hubert P, Crémel G, Bennasroune A (2015) Role of ErbB receptors in cancer cell migration and invasion. Front Pharmacol 6:283. https://doi.org/10.3389/fphar.2015.00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E (2014) PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 46(6):372–383

    CAS  PubMed  Google Scholar 

  74. Shah S, Gapor A, Sylvester PW (2003) Role of caspase-8 activation in mediating vitamin E-induced apoptosis in murine mammary cancer cells. Nutr Cancer 45(2):236–246

    CAS  PubMed  Google Scholar 

  75. Shin-Kang S, Ramsauer VP, Lightner J, Chakraborty K, Stone W, Campbell S, Reddy SAG, Krishnan K (2011) Original contribution: tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway. Free Radical Biol Med 51:1164–1174. https://doi.org/10.1016/j.freeradbiomed.2011.06.008

    Article  CAS  Google Scholar 

  76. Alawin OA, Ahmed RA, Dronamraju V, Briski KP, Sylvester PW (2017) γ-Tocotrienol-induced disruption of lipid rafts in human breast cancer cells is associated with a reduction in exosome heregulin content. J Nutr Biochem 48:83–93

    CAS  PubMed  Google Scholar 

  77. Jang Y, Rao X, Jiang Q (2017) Gamma-tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. J Nutr Biochem 46:49–56

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang C, Jiang Q (2019) Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J Nutr Biochem 64:101–109

    CAS  PubMed  Google Scholar 

  79. Parajuli P, Tiwari R, Sylvester P (2015) Anti-proliferative effects of γ-tocotrienol are associated with suppression of c-Myc expression in mammary tumour cells. Cell Prolif 48(4):421–435

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chang PN, Yap WN, Lee DTW, Ling MT, Wong YC, Yap YL (2009) Evidence of gamma-tocotrienol as an apoptosis-inducing, invasion-suppressing, and chemotherapy drug-sensitizing agent in human melanoma cells. Nutr Cancer 61(3):357–366. https://doi.org/10.1080/01635580802567166

    Article  CAS  PubMed  Google Scholar 

  81. Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-kB in development and progression of human cancer. Virchows Arch 446(5):475–482

    CAS  PubMed  Google Scholar 

  82. Chai EZP, Shanmugam MK, Arfuso F, Dharmarajan A, Wang C, Kumar AP, Samy RP, Lim LH, Wang L, Goh BC (2016) Targeting transcription factor STAT3 for cancer prevention and therapy. Pharmacol Ther 162:86–97

    CAS  PubMed  Google Scholar 

  83. Bachawal SV, Wali VB, Sylvester PW (2010) Combined gamma-tocotrienol and erlotinib/gefitinib treatment suppresses Stat and Akt signaling in murine mammary tumor cells. Anticancer Res 30(2):429–437

    CAS  PubMed  Google Scholar 

  84. Constantinou C, Hyatt JA, Vraka PS, Papas A, Papas KA, Neophytou C, Hadjivassiliou V, Constantinou AI (2009) Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives. Nutr Cancer 61(6):864–874

    CAS  PubMed  Google Scholar 

  85. Constantinou C, Neophytou C, Vraka P, Hyatt J, Papas K, Constantinou A (2012) Induction of DNA damage and caspase-independent programmed cell death by vitamin E. Nutr Cancer 64(1):136–152

    CAS  PubMed  Google Scholar 

  86. Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381

    CAS  PubMed  Google Scholar 

  87. Zhang J-S, Li D-M, He N, Liu Y-H, Wang C-H, Jiang SQ, Chen B-Q, Liu J-R (2011) A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway. Toxicology 285:8–17

    CAS  PubMed  Google Scholar 

  88. Zhang J-S, Li D-M, Ma Y, He N, Gu Q, Wang F-S, Jiang S-Q, Chen B-Q, Liu J-R (2013) γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells. PLoS One 8(2):e57779

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fontana F, Moretti RM, Raimondi M, MarzagallI M, Beretta G, Procacci P, Sartori P, Montagnani Marelli M, Limonta P (2019) δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif. https://doi.org/10.1111/cpr.12576

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang H, Luo J, Tian W, Yan W, Ge S, Zhang Y, Sun W (2019) γ-Tocotrienol inhibits oxidative phosphorylation and triggers apoptosis by inhibiting mitochondrial complex I subunit NDUFB8 and complex II subunit SDHB. Toxicology 417:42–53

    CAS  PubMed  Google Scholar 

  91. Liu H, Wang Q, Li Y, Sun W, Liu J, Yang Y, Xu W, Sun X, Chen B (2010) Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. J Nutr Biochem 21(3):206–213. https://doi.org/10.1016/j.jnutbio.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  92. Nakagawa K, Eitsuka T, Inokuchi H, Miyazawa T (2004) DNA chip analysis of comprehensive food function: inhibition of angiogenesis and telomerase activity with unsaturated vitamin E, tocotrienol. BioFactors 21(1–4):5–10. https://doi.org/10.1002/biof.552210102

    Article  CAS  PubMed  Google Scholar 

  93. Shibata A, Nakagawa K, Tsuduki T, Oikawa S, Miyazawa T (2009) δ-Tocotrienol suppresses VEGF induced angiogenesis whereas α-tocopherol does not. J Agric Food Chem 57(18):8696–8704

    CAS  PubMed  Google Scholar 

  94. Weng-Yew W, Selvaduray KR, Ming CH, Nesaretnam K (2009) Suppression of tumor growth by palm tocotrienols via the attenuation of angiogenesis. Nutr Cancer 61(3):367–373. https://doi.org/10.1080/01635580802582736

    Article  CAS  PubMed  Google Scholar 

  95. Selvaduray KR, Nesaretnam K, Radhakrishnan AK, Kutty MK (2012) Palm tocotrienols decrease levels of pro-angiogenic markers in human umbilical vein endothelial cells (HUVEC) and murine mammary cancer cells. Genes Nutr 7(1):53–61. https://doi.org/10.1007/s12263-011-0223-0

    Article  CAS  PubMed  Google Scholar 

  96. Selvaduray KR, Nesaretnam K, Radhakrishnan AK, Kutty MK (2010) Palm tocotrienols inhibit proliferation of murine mammary cancer cells and induce expression of interleukin-24 mRNA. J Interferon Cytokine Res 30(12):909–916

    CAS  PubMed  Google Scholar 

  97. Luk SU, Chiu Y, Lee DTW, Wong Y, Ching YP, Yap WN, Yap YL, Ma S, Lee TKW, Vasireddy RS, Nelson C, Ling M-T (2011) Gamma-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int J Cancer 128(9):2182–2191. https://doi.org/10.1002/ijc.25546

    Article  CAS  PubMed  Google Scholar 

  98. Lee OK, Ma Z, Yeh C-R, Luo T, Lin T-H, Lai KP et al (2013) New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J Mol Cell Biol 5:14–26

    CAS  PubMed  Google Scholar 

  99. Kaneko S, Sato C, Shiozawa N, Sato A, Sato H, Virgona N, Yano T (2018) Suppressive effect of delta-tocotrienol on hypoxia adaptation of prostate cancer stem-like cells. Anticancer Res 38(3):1391–1399

    CAS  PubMed  Google Scholar 

  100. Gopalan A, Yu W, Sanders BG, Kline K (2013) Eliminating drug resistant breast cancer stem-like cells with combination of simvastatin and gamma-tocotrienol. Cancer Lett 328:285–296

    CAS  PubMed  Google Scholar 

  101. Xiong A, Yu W, Liu Y, Sanders BG, Kline K (2016) Elimination of ALDHþ breast tumor initiating cells by docosahexanoic acid and/or gamma tocotrienol through SHP-1 inhibition of STAT3 signaling. Mol Carcinog 55:420–430

    CAS  PubMed  Google Scholar 

  102. Gu W, Prasadam I, Yu M, Zhang F, Ling P, Xiao Y, Yu C (2015) Gamma tocotrienol targets tyrosine phosphatase SHP2 in mammospheres resulting in cell death through RAS/ERK pathway. BMC Cancer 15:609

    PubMed  PubMed Central  Google Scholar 

  103. Husain K, Centeno BA, Coppola D, Trevino J, Sebti SM, Malafa MP (2017) δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis. Oncotarget 8(19):31554–31567

    PubMed  PubMed Central  Google Scholar 

  104. Komiyama K, Iizuka K, Yamaoka M, Watanabe H, Tsuchiya N, Umezawa I (1989) Studies on the biological activity of tocotrienols. Chem Pharm Bull 37(5):1369–1371

    CAS  PubMed  Google Scholar 

  105. Hiura Y, Tachibana H, Arakawa R, Aoyama N, Okabe M, Sakai M, Yamada K (2009) Research article: specific accumulation of γ- and δ-tocotrienols in tumor and their antitumor effect in vivo. J Nutr Biochem 20:607–613. https://doi.org/10.1016/j.jnutbio.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  106. Siveen KS, Shanmugam MK, Li F, Yap WN, Kumar AP, Sethi G, Ahn KS, Ong TH, Hui KM, Fong CW, Tergaonkar V (2014) γ-Tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget 5(7):1897–1911. https://doi.org/10.18632/oncotarget.1876

    Article  PubMed  PubMed Central  Google Scholar 

  107. Manu KA, Shanmugam MK, Ramachandran L, Li F, Kumar AP, Sethi G, Tan P, Fong CW (2012) First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clin Cancer Res 18(8):2220–2229. https://doi.org/10.1158/1078-0432.CCR-11-2470

    Article  CAS  PubMed  Google Scholar 

  108. Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G (2012) Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 130(3):685–693. https://doi.org/10.1002/ijc.26054

    Article  CAS  PubMed  Google Scholar 

  109. Shen M, Hang Chan T, Ping Dou Q (2012) Targeting tumor ubiquitin-proteasome pathway with polyphenols for chemosensitization. Anticancer Agents Med Chem 12(8):891–901

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2016) γ-Tocotrienol suppresses growth and sensitises human colorectal tumours to capecitabine in a nude mouse xenograft model by down-regulating multiple molecules. Br J Cancer 115(7):814–824. https://doi.org/10.1038/bjc.2016.257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kunnumakkara AB, Sung B, Ravindran J, Diagaradjane P, Deorukhkar A, Dey S, Koca C, Yadav VR, Tong Z, Gelovani JG, Guha S, Krishnan S, Aggarwal BB (2010) {Gamma}-tocotrienol inhibits pancreatic tumors and sensitizes them to gemcitabine treatment by modulating the inflammatory microenvironment. Can Res 70(21):8695–8705. https://doi.org/10.1158/0008-5472.CAN-10-2318

    Article  CAS  Google Scholar 

  112. Bachawal SV, Wali VB, Sylvester PW (2010) Enhanced antiproliferative and apoptotic response to combined treatment of gamma-tocotrienol with erlotinib or gefitinib in mammary tumor cells. BMC Cancer 10:84. https://doi.org/10.1186/1471-2407-10-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kannappan R, Yadav VR, Aggarwal BB (2016) Correction: γ-Tocotrienol but not γ-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents (Journal of Biological Chemistry (2010) 285 (33520-33528)). J Biol Chem 291(32):16922. https://doi.org/10.1074/jbc.A110.158378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kani K, Momota Y, Harada M, Yamamura Y, Aota K, Yamanoi T, Takano H, Motegi K, Azuma M (2013) γ-Tocotrienol enhances the chemosensitivity of human oral cancer cells to docetaxel through the downregulation of the expression of NF-κB-regulated anti-apoptotic gene products. Int J Oncol 42(1):75–82. https://doi.org/10.3892/ijo.2012.1692

    Article  CAS  PubMed  Google Scholar 

  115. Gu W, Prasadam I, Yu M, Zhang F, Ling P, Xiao Y, Yu C (2015) Gamma tocotrienol targets tyrosine phosphatase SHP2 in mammospheres resulting in cell death through RAS/ERK pathway. BMC Cancer 15(1):1

    CAS  Google Scholar 

  116. Aykin-Burns N, Pathak R, Boerma M, Kim T, Hauer-Jensen M (2019) Utilization of vitamin E analogs to protect normal tissues while enhancing antitumor effects. Semin Radiat Oncol 29(1):55–61

    PubMed  PubMed Central  Google Scholar 

  117. Murtaugh MA, Ma K, Benson J, Curtin K, Caan B, Slattery ML (2004) Antioxidants, carotenoids, and risk of rectal cancer. Am J Epidemiol 159(1):32–41

    PubMed  Google Scholar 

  118. ATBC Cancer Prevention Study Group (1994) The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. Ann Epidemiol 4(1):1–10

    Google Scholar 

  119. Heinonen OP, Albanes D, Virtamo J, Taylor PR, Huttunen JK, Hartman AM, Haapakoski J, Malila N, Rautalahti M, Ripatti S, Mäenpää H, Teerenhovi L, Koss L, Virolainen M, Edwards BK (1998) Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst 90(6):440–446

    CAS  PubMed  Google Scholar 

  120. Virtamo J, Taylor PR, Kontto J, Männistö S, Utriainen M, Weinstein SJ, Huttunen J, Albanes D (2014) Effects of α-tocopherol and β-carotene supplementation on cancer incidence and mortality: 18-year postintervention follow-up of the alpha-tocopherol, beta-carotene Cancer Prevention Study. Int J Cancer 135(1):178–185. https://doi.org/10.1002/ijc.28641

    Article  CAS  PubMed  Google Scholar 

  121. Lee I, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, Hennekens CH, Buring JE (2005) Vitamin E in the primary prevention of cardiovascular disease and cancer: the women’s health study: a randomized controlled trial. JAMA 294(1):56

    CAS  PubMed  Google Scholar 

  122. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers. JAMA 301(1):39–51

    CAS  PubMed  Google Scholar 

  123. Springett GM, Husain K, Hutchinson TZ, Malafa MP, Neuger A, Lush RM, Centeno B, Chen D, Sebti S (2015) A phase I safety, pharmacokinetic, and pharmacodynamic presurgical trial of vitamin E δ-tocotrienol in patients with pancreatic ductal neoplasia. EBioMedicine 2(12):1987–1995. https://doi.org/10.1016/j.ebiom.2015.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mahipal A, Klapman J, Vignesh S, Yang CS, Neuger A, Chen D, Malafa MP (2016) Pharmacokinetics and safety of vitamin E d-tocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolites. Cancer Chemother Pharmacol 78(1):157–165. https://doi.org/10.1007/s00280-016-3048-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shen C, Yang S, Tomison MD, Mo H, Wang S, Felton CK, Soelaiman IN (2016) Safety and efficacy of tocotrienol supplementation for bone health in postmenopausal women: protocol for a dose-response double-blinded placebo-controlled randomised trial. BMJ Open 6(12):6. https://doi.org/10.1136/bmjopen-2016-012572

    Article  Google Scholar 

  126. Nesaretnam K, Selvaduray KR, Abdul Razak G, Veerasenan SD, Gomez PA (2010) Effectiveness of tocotrienol-rich fraction combined with tamoxifen in the management of women with early breast cancer: a pilot clinical trial. Breast Cancer Res 12:R81. https://doi.org/10.1186/bcr2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research was supported by the Cyprus Research Promotion Foundation (grant-KINHTIKOTHTA/0506/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantina Constantinou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

All authors gave their informed consent prior to their inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantinou, C., Charalambous, C. & Kanakis, D. Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. Eur J Nutr 59, 845–857 (2020). https://doi.org/10.1007/s00394-019-01962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-019-01962-1

Keywords

Navigation