Skip to main content
Log in

The insulinotropic effect of a high-protein nutrient preload is mediated by the increase of plasma amino acids in type 2 diabetes

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Aims

Eating protein before carbohydrate reduces postprandial glucose excursions by enhancing insulin and glucagon-like peptide-1 (GLP-1) secretion in type 2 diabetes (T2D). We tested the hypothesis that this insulinotropic effect depends on the elevation of plasma amino acids (AA) after the digestion of food protein.

Methods

In 16 T2D patients, we measured plasma AA levels through the course of two 75-g oral glucose tolerance tests (OGTT) preceded by either 500-ml water or a high-protein nutrient preload (50-g Parmesan cheese, one boiled egg, and 300-ml water). Changes in beta cell function were evaluated by measuring and modelling plasma glucose, insulin, and C-peptide through the OGTT. Changes in incretin hormone secretion were assessed by measuring plasma GLP-1.

Results

Plasma AA levels were 24% higher after the nutrient preload (p < 0.0001). This increment was directly proportional to both the enhancement of beta cell function (r = 0.58, p = 0.02) and the plasma GLP-1 gradients (r = 0.57, p = 0.02) produced by the nutrient preload. Among single AA, glutamine showed the strongest correlation with changes in beta cell function (r = 0.61, p = 0.01), while leucine showed the strongest correlation with GLP-1 responses (r = 0.74, p = 0.001).

Conclusions

The elevation of circulating AA that occurs after a high-protein nutrient preload is associated with an enhancement of beta cell function and GLP-1 secretion in T2D. Manipulating the meal sequence of nutrient ingestion may reduce postprandial hyperglycaemia through a direct and GLP-1-mediated stimulation of insulin secretion by plasma AA.

Trial registration number

NCT02342834.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acids

AUC:

Area under the curve

GLP-1:

Glucagon-like peptide 1

ISR:

Insulin secretion rate

ISR@FPG:

Insulin secretion rate at fasting plasma glucose

T2D:

Type 2 diabetes

References

  1. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, Neumiller JJ, Nwankwo R, Verdi CL, Urbanski P, Yancy WS Jr, American Diabetes A (2013) Nutrition therapy recommendations for the management of adults with diabetes. Diabetes care 36(11):3821–3842. https://doi.org/10.2337/dc13-2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517(7534):302–310. https://doi.org/10.1038/nature14190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tricò D, Filice E, Trifirò S, Natali A (2016) Manipulating the sequence of food ingestion improves glycemic control in type 2 diabetic patients under free-living conditions. Nutr Diabetes 6(8):e226. https://doi.org/10.1038/nutd.2016.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tricò D, Natali A (2017) Modulation of postprandial glycemic responses by noncarbohydrate nutrients provides novel approaches to the prevention and treatment of type 2 diabetes. Am J Clin Nutr 106(2):701–702. https://doi.org/10.3945/ajcn.117.157255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shukla AP, Iliescu RG, Thomas CE, Aronne LJ (2015) Food order has a significant impact on postprandial glucose and insulin levels. Diabetes Care 38(7):e98–e99. https://doi.org/10.2337/dc15-0429

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuwata H, Iwasaki M, Shimizu S, Minami K, Maeda H, Seino S, Nakada K, Nosaka C, Murotani K, Kurose T, Seino Y, Yabe D (2016) Meal sequence and glucose excursion, gastric emptying and incretin secretion in type 2 diabetes: a randomised, controlled crossover, exploratory trial. Diabetologia 59(3):453–461. https://doi.org/10.1007/s00125-015-3841-z

    Article  CAS  PubMed  Google Scholar 

  7. Ma J, Jesudason DR, Stevens JE, Keogh JB, Jones KL, Clifton PM, Horowitz M, Rayner CK (2015) Sustained effects of a protein ‘preload’ on glycaemia and gastric emptying over 4 weeks in patients with type 2 diabetes: a randomized clinical trial. Diabetes Res Clin Pract 108(2):e31–e34. https://doi.org/10.1016/j.diabres.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  8. Imai S, Fukui M, Ozasa N, Ozeki T, Kurokawa M, Komatsu T, Kajiyama S (2013) Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabet Med 30(3):370–372. https://doi.org/10.1111/dme.12073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tricò D, Baldi S, Tulipani A, Frascerra S, Macedo MP, Mari A, Ferrannini E, Natali A (2015) Mechanisms through which a small protein and lipid preload improves glucose tolerance. Diabetologia 58(11):2503–2512. https://doi.org/10.1007/s00125-015-3710-9

    Article  CAS  PubMed  Google Scholar 

  10. Tricò D, Filice E, Baldi S, Frascerra S, Mari A, Natali A (2016) Sustained effects of a protein and lipid preload on glucose tolerance in type 2 diabetes patients. Diabetes Metab 42(4):242–248. https://doi.org/10.1016/j.diabet.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  11. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL, Clifton PM, Horowitz M, Rayner CK (2009) Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 32(9):1600–1602. https://doi.org/10.2337/dc09-0723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nauck MA, Baller B, Meier JJ (2004) Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes 53(Suppl 3):S190–S196

    Article  CAS  PubMed  Google Scholar 

  13. Carr RD, Larsen MO, Winzell MS, Jelic K, Lindgren O, Deacon CF, Ahren B (2008) Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am J PHYSIOL ENDOCRINOL METAB 295(4):E779–E784. https://doi.org/10.1152/ajpendo.90233.2008

    Article  CAS  PubMed  Google Scholar 

  14. Lindgren O, Pacini G, Tura A, Holst JJ, Deacon CF, Ahren B (2015) Incretin effect after oral amino acid ingestion in humans. J Clin Endocrinol Metab 100(3):1172–1176. https://doi.org/10.1210/jc.2014-3865

    Article  CAS  PubMed  Google Scholar 

  15. Nuttall FQ, Gannon MC (1991) Plasma glucose and insulin response to macronutrients in nondiabetic and NIDDM subjects. Diabetes Care 14(9):824–838

    Article  CAS  PubMed  Google Scholar 

  16. Natali A, Baldi S, Bonnet F, Petrie J, Trifirò S, Tricò D, Mari A, Investigators R (2017) Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects. Metabolism 69:33–42. https://doi.org/10.1016/j.metabol.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  17. Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J (1966) Stimulation of insulin secretion by amino acids. J Clin Invest 45(9):1487–1502. https://doi.org/10.1172/JCI105456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72(1):96–105

    Article  PubMed  Google Scholar 

  19. Floyd JC Jr, Fajans SS, Pek S, Thiffault CA, Knopf RF, Conn JW (1970) Synergistic effect of certain amino acid pairs upon insulin secretion in man. Diabetes 19(2):102–108

    Article  CAS  PubMed  Google Scholar 

  20. Newsholme P, Cruzat V, Arfuso F, Keane K (2014) Nutrient regulation of insulin secretion and action. J Endocrinol 221(3):R105–R120. https://doi.org/10.1530/JOE-13-0616

    Article  CAS  PubMed  Google Scholar 

  21. American Diabetes Association (2017) Classification and diagnosis of diabetes, standards of medical care in diabetes. Diabetes Care 40(Suppl 1):S11–S24. https://doi.org/10.2337/dc17-S005

    Article  Google Scholar 

  22. Buzzigoli G, Lanzone L, Ciociaro D, Frascerra S, Cerri M, Scandroglio A, Coldani R, Ferrannini E (1990) Characterization of a reversed-phase high-performance liquid chromatographic system for the determination of blood amino acids. J Chromatogr 507:85–93

    Article  CAS  PubMed  Google Scholar 

  23. Muscelli E, Frascerra S, Casolaro A, Baldi S, Mari A, Gall W, Cobb J, Ferrannini E (2014) The amino acid response to a mixed meal in patients with type 2 diabetes: effect of sitagliptin treatment. Diabetes Obes Metab 16(11):1140–1147. https://doi.org/10.1111/dom.12350

    Article  CAS  PubMed  Google Scholar 

  24. Van Cauter E, Mestrez F, Sturis J, Polonsky KS (1992) Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 41(3):368–377

    Article  PubMed  Google Scholar 

  25. Mari A, Ferrannini E (2008) Beta-cell function assessment from modelling of oral tests: an effective approach. Diabetes Obes Metab 10 Suppl 4:77–87. https://doi.org/10.1111/j.1463-1326.2008.00946.x

    Article  CAS  PubMed  Google Scholar 

  26. Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E (2002) Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 283(6):E1159–E1166. https://doi.org/10.1152/ajpendo.00093.2002

    Article  CAS  PubMed  Google Scholar 

  27. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ (2001) A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 24(3):539–548

    Article  CAS  Google Scholar 

  28. Wu T, Little TJ, Bound MJ, Borg M, Zhang X, Deacon CF, Horowitz M, Jones KL, Rayner CK (2016) A protein preload enhances the glucose-lowering efficacy of Vildagliptin in type 2 diabetes. Diabetes Care 39(4):511–517. https://doi.org/10.2337/dc15-2298

    Article  CAS  PubMed  Google Scholar 

  29. Berger S, Vongaraya N (1966) Insulin response to ingested protein in diabetes. Diabetes 15(5):303–306

    Article  CAS  PubMed  Google Scholar 

  30. Rabinowitz D, Merimee TJ, Maffezzoli R, Burgess JA (1966) Patterns of hormonal release after glucose, protein, and glucose plus protein. Lancet 2(7461):454–456

    Article  CAS  PubMed  Google Scholar 

  31. Nuttall FQ, Mooradian AD, Gannon MC, Billington C, Krezowski P (1984) Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 7(5):465–470

    Article  CAS  PubMed  Google Scholar 

  32. Gannon MC, Nuttall FQ, Neil BJ, Westphal SA (1988) The insulin and glucose responses to meals of glucose plus various proteins in type II diabetic subjects. Metabolism 37(11):1081–1088

    Article  CAS  PubMed  Google Scholar 

  33. Gannon MC, Nuttall FQ, Lane JT, Burmeister LA (1992) Metabolic response to cottage cheese or egg white protein, with or without glucose, in type II diabetic subjects. Metabolism 41(10):1137–1145

    Article  CAS  PubMed  Google Scholar 

  34. van Loon LJ, Kruijshoop M, Menheere PP, Wagenmakers AJ, Saris WH, Keizer HA (2003) Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 26(3):625–630

    Article  PubMed  Google Scholar 

  35. Sener A, Malaisse WJ (1981) The stimulus-secretion coupling of amino acid-induced insulin release: insulinotropic action of branched-chain amino acids at physiological concentrations of glucose and glutamine. Eur J Clin Invest 11(6):455–460

    Article  CAS  PubMed  Google Scholar 

  36. McClenaghan NH, Barnett CR, O’Harte FP, Flatt PR (1996) Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic B-cell line. J Endocrinol 151(3):349–357

    Article  CAS  PubMed  Google Scholar 

  37. Schmid R, Schulte-Frohlinde E, Schusdziarra V, Neubauer J, Stegmann M, Maier V, Classen M (1992) Contribution of postprandial amino acid levels to stimulation of insulin, glucagon, and pancreatic polypeptide in humans. Pancreas 7(6):698–704

    Article  CAS  PubMed  Google Scholar 

  38. Calbet JA, MacLean DA (2002) Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132(8):2174–2182

    Article  CAS  PubMed  Google Scholar 

  39. Gannon MC, Nuttall FQ (2010) Amino acid ingestion and glucose metabolism—a review. IUBMB Life 62(9):660–668. https://doi.org/10.1002/iub.375

    Article  CAS  PubMed  Google Scholar 

  40. Sener A, Malaisse WJ (1980) L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288(5787):187–189

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Buettger C, Kwagh J, Matter A, Daikhin Y, Nissim IB, Collins HW, Yudkoff M, Stanley CA, Matschinsky FM (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279(14):13393–13401. https://doi.org/10.1074/jbc.M311502200

    Article  CAS  PubMed  Google Scholar 

  42. Chen Q, Reimer RA (2009) Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 25(3):340–349. https://doi.org/10.1016/j.nut.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  43. Gojda J, Strakova R, Plihalova A, Tuma P, Potockova J, Polak J, Andel M (2017) Increased incretin but not insulin response after oral versus intravenous branched chain amino acids. Ann Nutr Metab 70(4):293–302. https://doi.org/10.1159/000475604

    Article  CAS  PubMed  Google Scholar 

  44. Tricò D, Herzog RI (2017) Metabolic brain adaptations to recurrent hypoglycaemia may explain the link between type 1 diabetes mellitus and epilepsy and point towards future study and treatment options. Diabetologia 60(5):938–939. https://doi.org/10.1007/s00125-017-4231-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seghieri M, Tricò D, Natali A (2017) The impact of triglycerides on glucose tolerance: lipotoxicity revisited. Diabetes Metab 43(4):314–322. https://doi.org/10.1016/j.diabet.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  46. Tricò D, Di Sessa A, Caprio S, Chalasani N, Liu W, Liang T, Graf J, Herzog RI, Johnson CD, Umano GR, Feldstein AE, Santoro N (2017) Oxidized derivatives of linoleic acid in pediatric metabolic syndrome: is their pathogenic role modulated by the genetic background and the gut microbiota? Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7049 (in press)

    Article  PubMed  Google Scholar 

  47. Ahren B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43(4):393–410. https://doi.org/10.1007/s001250051322

    Article  CAS  Google Scholar 

  48. Tricò D, Prinsen H, Giannini C, de Graaf R, Juchem C, Li F, Caprio S, Santoro N, Herzog RI (2017) Elevated alpha-hydroxybutyrate and branched-chain amino acid levels predict deterioration of glycemic control in adolescents. J Clin Endocrinol Metab 102(7):2473–2481. https://doi.org/10.1210/jc.2017-00475

    Article  PubMed  PubMed Central  Google Scholar 

  49. Goffredo M, Santoro N, Tricò D, Giannini C, D’Adamo E, Zhao H, Peng G, Yu X, Lam TT, Pierpont B, Caprio S, Herzog RI (2017) A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease. Nutrients 9(7):E642. https://doi.org/10.3390/nu9070642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the volunteers enrolled in this trial and all the personnel of the Nutrition, Metabolism and Atherosclerosis Laboratory at the University of Pisa.

Funding

This work was supported by Grants from the University of Pisa (Fondi di Ateneo).

Author information

Authors and Affiliations

Authors

Contributions

DT conceived and designed the study, conducted the clinical studies, provided a substantial contribution to the acquisition, analysis, and interpretation of the data, and wrote the manuscript. SF and SB provided a substantial contribution to the data collection and analysis. AMe and LN provided a substantial contribution to the analysis and interpretation of the data. AMa provided a substantial contribution to the generation and interpretation of the data from the mathematical model of beta cell function and insulin sensitivity. AN conceived and designed the study, provided a substantial contribution to the analysis and interpretation of the data, and critically revised the manuscript. All authors revised the manuscript and approved the final version of the article. DT and AN are responsible for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Domenico Tricò.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tricò, D., Frascerra, S., Baldi, S. et al. The insulinotropic effect of a high-protein nutrient preload is mediated by the increase of plasma amino acids in type 2 diabetes. Eur J Nutr 58, 2253–2261 (2019). https://doi.org/10.1007/s00394-018-1778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-018-1778-y

Keywords

Navigation