Skip to main content
Log in

Influence of rice, pea and oat proteins in attenuating glycemic response of sugar-sweetened beverages

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Liquids have higher ingestion and gastric-emptying rates, resulting in rapid glycemic response. They are also less satiating than solid foods. This study examined if the addition of plant proteins alter postprandial glucose, insulin, triglycerides, glucose-dependent insulinotropic peptide (GIP), glycogen-like peptide-1 (GLP-1) and appetitive responses to a sugar-sweetened beverage.

Methods

This was a randomized, crossover acute feeding study consisting of four treatments: chocolate beverage alone (50 g carbohydrate), or added with 24 g oat, pea or rice proteins. Twenty Chinese males (mean ± SD age 26 ± 5 years; body mass index 21.5 ± 1.7 kg/m2) ingested the test drink after an overnight fast. Venous blood samples and subjective appetite ratings were collected before test beverage and at fixed intervals for 180 min. Blood biochemical data and appetite ratings were compared using repeated-measures ANOVA.

Results

Significant interaction effects were found in postprandial glucose excursions (time × protein effects, p = 0.003). Glucose iAUC was lower in pea and rice proteins, although not significantly (p > 0.385). Insulin iAUC was significantly higher in the oat (p = 0.035) and pea (p = 0.036) protein beverages. GIP and GLP-1 release in a sub-sample (n = 10) followed a comparable order as insulin release (p = 0.397 and 0.454, respectively). Significant interaction effects were found in fullness ratings (p = 0.024), and a trend of greater suppression of hunger and desire-to-eat was also documented (p = 0.088 and 0.080, respectively).

Conclusions

Plant proteins altered the glycemic and appetitive responses of Asian males to a sugar-sweetened beverage. Food-based interventions are useful in promoting glycemic control. This trial was registered with ClinicalTrials.gov as NCT02933424.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Diabetes Association (2017) 2. Classification and diagnosis of diabetes. Diabetes Care 40(Supplement 1):S11–S24

    Article  Google Scholar 

  2. Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M (2000) Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23(12):1830–1834

    Article  CAS  Google Scholar 

  3. Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, Anfossi G, Costa G, Trovati M (2006) Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 91(3):813–819

    Article  CAS  Google Scholar 

  4. Dickinson S, Colagiuri S, Faramus E, Petocz P, Brand-Miller J (2002) Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities. J Nutr 132(9):2574–2579

    Article  CAS  Google Scholar 

  5. Ma RC, Chan JC (2013) Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann NY Acad Sci 1281(1):64–91

    Article  Google Scholar 

  6. Behall KM, Scholfield DJ, Canary J (1988) Effect of starch structure on glucose and insulin responses in adults. Am J Clin Nutr 47(3):428–432

    Article  CAS  Google Scholar 

  7. Brennan CS (2005) Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res 49(6):560–570

    Article  Google Scholar 

  8. Tan S-Y, Peh EW-Y, Marangoni AG, Henry CJ (2017) Effects of liquid oil vs. oleogel co-ingested with a carbohydrate-rich meal on human blood triglycerides, glucose, insulin and appetite. Food Funct 8:241–249

    Article  CAS  Google Scholar 

  9. American Diabetes Association (2017) 4. Lifestyle management. Diabetes Care 40(Supplement 1):S33–S43

    Article  Google Scholar 

  10. Karhunen L, Juvonen K, Huotari A, Purhonen A, Herzig K (2008) Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept 149(1):70–78

    Article  CAS  Google Scholar 

  11. Sun L, Wei Jie Tan K, Jeyakumar Henry C (2015) Co-ingestion of essence of chicken to moderate glycaemic response of bread. Int J Food Sci Nutr 66(8):931–935

    Article  CAS  Google Scholar 

  12. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72(1):96–105

    Article  Google Scholar 

  13. Hu FB, Malik VS (2010) Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav 100(1):47–54

    Article  CAS  Google Scholar 

  14. Camilleri M, Malagelada JR, Brown ML, Becker G, Zinsmeister AR (1985) Relation between antral motility and gastric emptying of solids and liquids in humans. Am J Physiol 249(5):G580–G585

    CAS  PubMed  Google Scholar 

  15. Cassady BA, Considine RV, Mattes RD (2012) Beverage consumption, appetite, and energy intake: what did you expect? Am J Clin Nutr 95(3):587–593

    Article  CAS  Google Scholar 

  16. Dhillon J, Running CA, Tucker RM, Mattes RD (2016) Effects of food form on appetite and energy balance. Food Qual Prefer 48:368–375

    Article  Google Scholar 

  17. Duffey KJ, Popkin BM (2007) Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity 15(11):2739–2747

    Article  Google Scholar 

  18. Barquera S, Hernandez-Barrera L, Tolentino ML, Espinosa J, Ng SW, Rivera JA, Popkin BM (2008) Energy intake from beverages is increasing among Mexican adolescents and adults. J Nutr 138(12):2454–2461

    Article  CAS  Google Scholar 

  19. Bell A, Kremer P, Magarey AM, Swinburn B (2005) Contribution of ‘noncore’foods and beverages to the energy intake and weight status of Australian children. Eur J Clin Nutr 59(5):639–645

    Article  CAS  Google Scholar 

  20. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL, Clifton PM, Horowitz M, Rayner CK (2009) Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 32(9):1600–1602

    Article  CAS  Google Scholar 

  21. Nuttall FQ, Mooradian AD, Gannon MC, Billington C, Krezowski P (1984) Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 7(5):465–470

    Article  CAS  Google Scholar 

  22. Calbet JA, Holst JJ (2004) Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 43(3):127–139

    Article  CAS  Google Scholar 

  23. Dhillon J, Craig BA, Leidy HJ, Amankwaah AF, Anguah KO-B, Jacobs A, Jones BL, Jones JB, Keeler CL, Keller CE (2016) The effects of increased protein intake on fullness: a meta-analysis and its limitations. J Acad Nutr Diet 116(6):968–983

    Article  Google Scholar 

  24. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, van Vught AJ, Westerterp KR, Engelen MP, Brummer RJ, Deutz NE, Westerterp-Plantenga MS (2009) Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav 96(4–5):675–682

    Article  CAS  Google Scholar 

  25. Nilsson M, Stenberg M, Frid AH, Holst JJ, Björck IM (2004) Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 80(5):1246–1253

    Article  CAS  Google Scholar 

  26. Gilbert JA, Bendsen NT, Tremblay A, Astrup A (2011) Effect of protein from different sources on body composition. Nutr Metab Cardiovasc Dis 21:B16–B31

    Article  CAS  Google Scholar 

  27. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326

    Article  CAS  Google Scholar 

  28. Hall W, Millward D, Long S, Morgan L (2003) Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr 89(02):239–248

    Article  CAS  Google Scholar 

  29. Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J (1966) Stimulation of insulin secretion by amino acids. J Clin Invest 45(9):1487–1502

    Article  CAS  Google Scholar 

  30. Nestle M (1999) Animal v. plant foods in human diets and health: is the historical record unequivocal? Proc Nutr Soc 58(02):211–218

    Article  CAS  Google Scholar 

  31. World Health Organization (2003) Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. WHO Tech Rep Series, Geneva

    Google Scholar 

  32. Quek R, Bi X, Henry CJ (2016) Impact of protein-rich meals on glycaemic response of rice. Br J Nutr 115(07):1194–1201

    Article  CAS  Google Scholar 

  33. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53(370):947–958

    Article  CAS  Google Scholar 

  34. Spiller GA, Jensen CD, Pattison T, Chuck CS, Whittam JH, Scala J (1987) Effect of protein dose on serum glucose and insulin response to sugars. Am J Clin Nutr 46(3):474–480

    Article  CAS  Google Scholar 

  35. Flint A, Raben A, Blundell JE, Astrup A (2000) Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes 24(1):38–48

    Article  CAS  Google Scholar 

  36. Wolever TM (2006) Determining the GI of foods—methodological considerations. In: Wolever TM (ed) The glycaemic index: a physiological classification of dietary carbohydrate. CABI, Wallingford, pp 12–42

    Chapter  Google Scholar 

  37. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, Westerterp KR, Engelen MP, Brummer R-JM, Deutz NE, Westerterp-Plantenga MS (2009) Effects of high and normal soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and ‘satiety’hormone responses. Eur J Nutr 48(2):92–100

    Article  CAS  Google Scholar 

  38. Calbet JA, MacLean DA (2002) Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132(8):2174–2182

    Article  CAS  Google Scholar 

  39. Claessens M, Calame W, Siemensma AD, Saris WH, van Baak MA (2007) The thermogenic and metabolic effects of protein hydrolysate with or without a carbohydrate load in healthy male subjects. Metabolism 56(8):1051–1059

    Article  CAS  Google Scholar 

  40. Ishikawa Y, Hira T, Inoue D, Harada Y, Hashimoto H, Fujii M, Kadowaki M, Hara H (2015) Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food Funct 6(8):2525–2534

    Article  CAS  Google Scholar 

  41. Fajans S, Floyd Jr J, Knopf R, Conn J (2013) Effect of amino acids and proteins on insulin secretion in man. In: Schering symposium on endocrinology, Berlin, May 26 to 27, 1967: advances in the biosciences, Elsevier, p 231

    Chapter  Google Scholar 

  42. Gilani GS, Cockell KA, Sepehr E (2005) Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 88(3):967–987

    CAS  PubMed  Google Scholar 

  43. Holt GM, Owen LJ, Till S, Cheng Y, Grant VA, Harden CJ, Corfe BM (2016) Systematic literature review shows that appetite rating does not predict energy intake. Crit Rev Food Sci Nutr in press. doi:10.1080/10408398.2016.1246414

    Article  Google Scholar 

  44. Borzoei S, Neovius M, Barkeling B, Teixeira-Pinto A, Rössner S (2006) A comparison of effects of fish and beef protein on satiety in normal weight men. Eur J Clin Nutr 60(7):897–902

    Article  CAS  Google Scholar 

  45. Pal S, Ellis V (2010) The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr 104(08):1241–1248

    Article  CAS  Google Scholar 

  46. Anderson GH, Tecimer SN, Shah D, Zafar TA (2004) Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men. J Nutr 134(11):3011–3015

    Article  CAS  Google Scholar 

  47. Williamson DA, Geiselman PJ, Lovejoy J, Greenway F, Volaufova J, Martin CK, Arnett C, Ortego L (2006) Effects of consuming mycoprotein, tofu or chicken upon subsequent eating behaviour, hunger and safety. Appetite 46(1):41–48

    Article  Google Scholar 

  48. Bowen J, Noakes M, Clifton PM (2006) Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J Clin Endocrinol Metab 91(8):2913–2919

    Article  CAS  Google Scholar 

  49. Tan S-Y, Batterham MJ, Tapsell LC (2010) Energy expenditure does not differ, but protein oxidation rates appear lower in meals containing predominantly meat versus soy sources of protein. Obes Facts 3:101–104

    Article  CAS  Google Scholar 

  50. Diepvens K, Häberer D, Westerterp-Plantenga M (2008) Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. Int J Obes 32(3):510–518

    Article  CAS  Google Scholar 

  51. Chungchunlam SM, Henare SJ, Ganesh S, Moughan PJ (2017) Effects of whey protein and its two major protein components on satiety and food intake in normal-weight women. Physiol Behav 175(1):113–118

    Article  CAS  Google Scholar 

  52. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ (2008) Translating the A1C assay into estimated average glucose values. Diabetes Care 31(8):1473–1478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our clinical trial nurse, Ms. Susanna Lim, for her phlebotomy assistance in this study. This study was partially funded by Wilmar International Limited. We would like to thank Wilmar for the rice protein, Tate & Lyle for the oat protein, and Roquette Freres for the pea protein concentrate used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiani Jeyakumar Henry.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, SY., Siow, P.C., Peh, E. et al. Influence of rice, pea and oat proteins in attenuating glycemic response of sugar-sweetened beverages. Eur J Nutr 57, 2795–2803 (2018). https://doi.org/10.1007/s00394-017-1547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1547-3

Keywords

Navigation