Skip to main content
Log in

miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the role of miR-124a in the regulation of genes involved in insulin exocytosis and its effects on the kinetics of insulin secretion in pancreatic islets from pregnant rats submitted to a low-protein diet.

Methods

Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. Kinetics of the glucose-induced insulin release and measurement of [Ca2+]i in pancreatic islets were assessed by standard protocols. The miR-124a expression and gene transcriptions from pancreatic islets were determined by real-time polymerase chain reaction.

Results

In islets from LPP rats, the first phase of insulin release was abrogated. The AUC [Ca2+]i from the LPP group was lower compared with the other groups. miR-124a expression was reduced by a low-protein diet. SNAP-25 mRNA, protein expression, and Rab3A protein content were lower in the LPP rats than in CP rats. Syntaxin 1A and Kir6.2 mRNA levels were decreased in islets from low-protein rats compared with control rats, whereas their protein content was reduced in islets from pregnant rats.

Conclusions

Loss of biphasic insulin secretion in islets from LPP rats appears to have resulted from reduced [Ca2+]i due, at least in part, to Kir6.2 underexpression and from the changes in exocytotic elements that are influenced either directly or indirectly by miR-124a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AUC:

Area under curve

cAMP:

Adenosine 3′,5′-cyclic monophosphate

[Ca2+]i :

Cytosolic calcium

CNP:

Control non-pregnant

CP:

Control pregnant

FOXA-2:

Forkhead box A2

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GH:

Human growth hormone

GLUT-2:

Glucose transporter-2

KATP :

ATP-sensitive K+ channel

Kir6.2:

Inward rectifier potassium channel member 6.2

K itt :

Rate constant for serum glucose disappearance during insulin-tolerance test

LPNP:

Low-protein non-pregnant

LPP:

Low-protein pregnant

LSD:

Least significant difference

miR:

MicroRNA

PKA:

Protein kinase A

Rab3A:

Rabphilin 3A

Rab27A:

Rabphilin 27A

RNA:

Ribonucleic acid

SDS:

Sodium dodecyl sulfate

SEM:

Standard error of the mean

SNAP-25:

Synaptosome-associated protein 25 kDa

SUR1:

Sulfonylurea receptor subunits

U6 snRNA:

Small nuclear ribonucleic acid U6

VAMP-2:

Vesicle-associated membrane protein 2

References

  1. Parsons JA, Brelje TC, Sorenson RL (1992) Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130:1459–1466

    CAS  PubMed  Google Scholar 

  2. Weinhaus AJ, Stout LE, Sorenson RL (1996) Glucokinase, hexokinase, glucose transporter 2, and glucose metabolism in islets during pregnancy and prolactin-treated islets in vitro: mechanisms for long term up-regulation of islets. Endocrinology 137:1640–1649

    Article  CAS  PubMed  Google Scholar 

  3. Weinhaus AJ, Bhagroo NV, Brelje TC, Sorenson RL (1998) Role of cAMP in upregulation of insulin secretion during the adaptation of islets of Langerhans to pregnancy. Diabetes 47:1426–1435

    Article  CAS  PubMed  Google Scholar 

  4. Cunha DA, Amaral ME, Carvalho CP, Collares-Buzato CB, Carneiro EM, Boschero AC (2006) Increased expression of SNARE proteins and synaptotagmin IV in islets from pregnant rats and in vitro prolactin-treated neonatal islets. Biol Res 39:555–566

    Article  CAS  PubMed  Google Scholar 

  5. Amaral AG, Rafacho A, Machado de Oliveira CA, Batista TM, Ribeiro RA, Latorraca MQ, Bposchero AC, Carneiro EM (2010) Leucine supplementation augments insulin secretion in pancreatic islets of malnourished mice. Pancreas 39:847–855

    Article  CAS  PubMed  Google Scholar 

  6. Souza DF, Ignacio-Souza LM, Reis SR, Reis MA, Stoppiglia LF, Carneiro EM, Boschero AC, Arantes VC, Latorraca MQ (2012) A low-protein diet during pregnancy alters glucose metabolism and insulin secretion. Cell Biochem Funct 30:114–121

    Article  CAS  Google Scholar 

  7. Soriano S, Gonzalez A, Marroqui L, Tuduri E, Vieira E, Amaral AG, Batista TM, Rafacho A, Boschero AC, Nadal A, Carneiro EM, Quesada I (2010) Reduced insulin secretion in protein malnourished mice is associated with multiple changes in the beta-cell stimulus-secretion coupling. Endocrinology 151:3543–3554

    Article  CAS  PubMed  Google Scholar 

  8. Batista TM, Ribeiro RA, Silva PM, Camargo RL, Lollo PC, Boschero AC, Carneiro EM (2013) Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res 57:423–434

    Article  CAS  PubMed  Google Scholar 

  9. Milanski M, Arantes VC, Ferreira F, de Barros Reis MA Carneiro EM, Boschero AC, Collares-Buzato CB, Latorraca MQ (2005) Low-protein diets reduce PKAalpha expression in islets from pregnant rats. J Nutr 135:1873–1878

    Article  CAS  PubMed  Google Scholar 

  10. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389:305–312

    Article  CAS  PubMed  Google Scholar 

  13. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharfmann R, Rutter GA, van Obberghen E (2007) MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem 282:19575–19588

    Article  CAS  PubMed  Google Scholar 

  14. Scott AM, Atwater I, Rojas E (1981) A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans. Diabetologia 21:470–475

    Article  CAS  PubMed  Google Scholar 

  15. Bordin S, Boschero AC, Carneiro EM, Atwater I (1995) Ionic mechanisms involved in the regulation of insulin secretion by muscarinic agonists. J Membr Biol 148:177–184

    Article  CAS  PubMed  Google Scholar 

  16. Kelley GG, Zawalich KC, Zawalich WS (1995) Synergistic interaction of glucose and neurohumoral agonists to stimulate islet phosphoinositide hydrolysis. Am J Physiol 269:E575–E582

    CAS  PubMed  Google Scholar 

  17. Amaral ME, Ueno M, Carvalheira JB, Carneiro EM Velloso LA, Saad MJ, Boschero AC (2003) Prolactin-signal transduction in neonatal rat pancreatic islets and interaction with the insulin-signaling pathway. Hormon Metab Res 35:282–289

    Article  CAS  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Gutierrez JM, Alvarez J, Díaz F, Fernández S, Menéndez-Patterson A (1991) Influence of nitrogen balance and intestinal glucose absorption on growth of rats recovery from early undernutrition. Nutr Res 11:835–840

    Article  Google Scholar 

  20. Fernández A, Ordás I, Gutiérrez JM, Ganzález C, Fernández S, Patterson AM (1993) The rehabilitation of malnourished rat, at the end of the lactation period, with two different sources of dietary lipids: soybean and olive oils. Nutrition. 12:79–88 (Life Science Advances)

    Google Scholar 

  21. Cerasi E, Luft R (1967) The plasma insulin response to glucose infusion in healthy subjects and in diabetes mellitus. Acta Endocrinol 55:278–304

    Article  CAS  Google Scholar 

  22. Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52:739–751

    Article  CAS  PubMed  Google Scholar 

  23. Rajan AS, Hill RS, Boyd AE 3rd (1989) Effect of rise in cAMP levels on Ca2 + influx through voltage-dependent Ca2+ channels in HIT cells. Second-messenger synarchy in beta-cells. Diabetes 38:874–880

    Article  CAS  PubMed  Google Scholar 

  24. Nadal A, Rovira JM, Laribi O, Leon-Quinto T, Andreu E, Ripoll C, Soria B (1998) Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor. FASEB J 12:1341–1348

    Article  CAS  PubMed  Google Scholar 

  25. Rafacho A, Marroquí L, Taboga SR, Abrantes JL, Silveira LR, Boschero AC, Carneiro EM, Bosqueiro JR, Nadal A, Quesada I (2010) Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology 151:85–95

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Q, Köhler M, Yang SN, Zhang F, Larsson O, Berggren PO (2004) Growth hormone promotes Ca(2+)-induced Ca2+ release in insulin-secreting cells by ryanodine receptor tyrosine phosphorylation. Mol Endocrinol 18:1658–1669

    Article  CAS  PubMed  Google Scholar 

  27. Straub SG, Sharp GW, Meglasson MD, de Souza CJ (2001) Progesterone inhibits insulin secretion by a membrane delimited, non-genomic action. Biosci Rep 21:653–666

    Article  CAS  PubMed  Google Scholar 

  28. Slingerland AS, Hattersley AT (2005) Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann Med 37:186–195

    Article  CAS  PubMed  Google Scholar 

  29. Izumi T, Gomi H, Kasai K, Mizutani S, Torii S (2003) The roles of Rab27 and its effectors in the regulated secretory pathways. Cell Struct Funct. 28:465–474.

    Article  CAS  PubMed  Google Scholar 

  30. Cheviet S, Coppola T, Haynes LP, Burgoyne RD, Regazzi R (2004) The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 18:117–126

    Article  CAS  PubMed  Google Scholar 

  31. Kasai K, Ohara-Iamizumi M, Takahashi N, Mizutani S, Zhao S, Kikuta T, Kasai H, Nagamatsu S, Gomi H, Izumi T (2005) Rab27A a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation. J Clin Investig 115:388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Donelan MJ, Morfini G, Julyan R, Sommers S, Hays L, Kajio H, Briaud I, Easom RA, Molkentin JD, Brady ST, Rhodes CJ (2002) Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis. J Biol Chem 277:24232–24242

    Article  CAS  PubMed  Google Scholar 

  33. Yaekura K, Julyan R, Wicksteed BL, Hays LB, Alarcon C, Sommers S, Poitout V, Baskin DG, Wang Y, Philipson LH, Rhodes CJ (2003) Insulin secretory deficiency and glucose intolerance in Rab3A null mice. J Biol Chem 278:9715–9721

    Article  CAS  PubMed  Google Scholar 

  34. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    Article  CAS  PubMed  Google Scholar 

  35. Huang X, Wheeler MB, Kang YH, Sheu L, Lukacs GL, Trimble WS, Gaisano HY (1998) Truncated SNAP-25 (1–197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol Endocrinol 12:1060–1070

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Celso Roberto Afonso for his excellent technical assistance. This work was supported by the Brazilian foundation CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, PROCAD, Grant No. 23038.023925/2008-62) and PRONEX/FAPEMAT (Programa de Apoio a Núcloes de Excelência/ Fundação de Amparo à Pesquisa do Estado de Mato Grosso, Grant No. 825637/2009). This work is part of a dissertation presented by Kariny Cassia de Siqueira as a partial requirement for a Master’s degree in Biosciences at the College of Nutrition, UFMT.

Author contributions

KCS, FML, FSL, MST, CFC, and SRLR carried out the islets isolation and performed real-time PCR and western blotting. RLC, TMB, and EMC help measuring [Ca2+]i. ECV and TRN assisted in cell culture and transfection. KCS, LMIS, and MQL contributed equally to this paper in various aspects of this study. KCS drafted the manuscript along with the other authors. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Queiroz Latorraca.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Siqueira, K.C., de Lima, F.M., Lima, F.S. et al. miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet. Eur J Nutr 57, 1471–1483 (2018). https://doi.org/10.1007/s00394-017-1425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1425-z

Keywords

Navigation