Skip to main content
Log in

Methylating micronutrient supplementation during pregnancy influences foetal hepatic gene expression and IGF signalling and increases foetal weight

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Maternal diet during pregnancy impacts foetal growth and development. In particular, dietary levels of methylating micronutrients (methionine, folate, choline, vitamins B6, and B12) interfere with the availability and allocation of methyl groups for methylation reactions, thereby influencing normal transcription. However, the currently recommended methylating micronutrient supplementation regimen is haphazard and arbitrary at best.

Methods

To investigate the effects of a methylating micronutrient-rich maternal diet, pregnant Pietrain sows were fed either a standard diet (CON) or a diet supplemented with methionine, folate, choline, B6, B12, and zinc (MET). Foetal liver and muscle (M. longissimus dorsi) tissues were collected at 35, 63, and 91 days post-conception. Transcriptional responses to diet were assessed in foetal liver. Altered insulin-like growth factor (IGF) signalling in transcriptome analyses prompted investigation of IGF-2 and insulin-like growth factor binding proteins (IGFBPs) levels in muscle and liver.

Results

Maternal diet enriched with methylating micronutrients was associated with increased foetal weight in late gestation. Hepatic transcriptional patterns also revealed differences in vitamin B6 and folate metabolism between the two diets, suggesting that supplementation was effective. Additionally, shifts in growth-supporting metabolic routes of the lipid and energy metabolism, including IGF signalling, and of cell cycle-related pathways were found to occur in liver tissue in supplemented individuals. Weight differences and modulated IGF pathways were also reflected in the muscle content of IGF-2 (increased in MET) and IGFBP-2 (decreased in MET).

Conclusions

Maternal dietary challenges provoke stage-dependent and tissue-specific transcriptomic modulations in the liver pointing to molecular routes contributing to the organismal adaptation. Subtle effects on late foetal growth are associated with changes in the IGF signalling mainly in skeletal muscle tissue that is less resilient to dietary stimuli than liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Snoeck A, Remacle C, Reusens B, Hoet J (1990) Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate 57:107–118

    Article  CAS  Google Scholar 

  2. Bertin E, Gangnerau M, Bellon G, Bailb D, Arbelot De Vacqueur A, Portha B (2002) Development of beta-cell mass in fetuses of rats deprived of protein and/or energy in last trimester of pregnancy. Am J Physiol Regul Integr Comp Physiol 283:R623–R630

    Article  CAS  Google Scholar 

  3. Du M, Zhu M, Means W, Hess B, Ford S (2005) Nutrient restriction differentially modulates the mammalian target of rapamycin signalling and the ubiquitin-proteasome system in skeletal muscle of cows and their fetuses. J Anim Sci 83:117–123

    CAS  Google Scholar 

  4. Hyatt M, Gardner D, Sebert S, Wilson V, Davidson N, Nigmatullina Y, Chan L, Budge H, Symonds M (2011) Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring. Reproduction 141:119–126

    Article  CAS  Google Scholar 

  5. McMillen I, Robinson J (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  CAS  Google Scholar 

  6. McMullen S, Langley-Evans S, Gambling L, Lang C, Swali A, McArdle H (2012) A common cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Med Hypotheses 78:88–94

    Article  CAS  Google Scholar 

  7. Oster M, Muráni E, Metges C, Ponsuksili S, Wimmers K (2014) High and low protein gestation diets do not provoke common transcriptional responses representing universal target-pathways in muscle and liver of porcine progeny. Acta Physiol (Oxf) 210:202–214

    Article  CAS  Google Scholar 

  8. Burdge G, Lillycrop K, Phillips E, Slater-Jefferies J, Jackson A, Hanson M (2009) Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr 139:1054–1060

    Article  CAS  Google Scholar 

  9. Sebert S, Sharkey D, Budge H, Symonds M (2011) The early programming of metabolic health: is epigenetic setting the missing link? Am J Clin Nutr 94:1953S–1958S

    Article  CAS  Google Scholar 

  10. Maloney C, Hay S, Rees W (2007) Folate deficiency during pregnancy impacts on methyl metabolism without affecting global DNA methylation in the rat fetus. Br J Nutr 97:1090–1098

    Article  CAS  Google Scholar 

  11. Lillycrop K, Phillips E, Jackson A, Hanson M, Burdge G (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    CAS  Google Scholar 

  12. Sie K, Li J, Ly A, Sohn KJ, Croxford R, Kim YI (2013) Effect of maternal and postweaning folic acid supplementation on global and gene-specific dna methylation in the liver of the rat offspring. Mol Nutr Food Res 57:677685

    Article  Google Scholar 

  13. Waterland R, Dolinoy D, Lin J, Smith C, Shi X et al (2006) Maternal methyl supplements increase offspring dna methylation at axin fused. Genesis 44:401–406

    Article  CAS  Google Scholar 

  14. Wolff G, Kodell R, Moore S, Cooney C (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in avy/a mice. FASEB J 12:949–957

    CAS  Google Scholar 

  15. Varela-Moreiras G, Selhub J, da Costa K, Zeisel S (1992) Effect of chronic choline deficiency in rats on liver folate content and distribution. J Nutr Biochem 3:519–522

    Article  CAS  Google Scholar 

  16. Jacob R, Jenden D, Allman-Farinelli M, Swendseid M (1999) Folate nutriture alters choline status of women and men fed low choline diets. J Nutr 129:712–717

    CAS  Google Scholar 

  17. Niculescu M, Zeisel S (2002) Diet, methyl donors and dna methylation: interactions between dietary folate, methionine and choline. J Nutr 132:2333S–2335S

    CAS  Google Scholar 

  18. Shaw G, Lammer E, Wasserman C, O’Malley C, Tolarova M (1995) Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 346(8972):393–396

    Article  CAS  Google Scholar 

  19. Hoile S, Lillycrop K, Grenfell L, Hanson M, Burdge G (2012) Increasing the folic acid content of maternal or post-weaning diets induces differential changes in phosphoenolpyruvate carboxykinase mRNA expression and promoter methylation in rats. Br J Nutr 108:852–857

    Article  CAS  Google Scholar 

  20. Schaible T, Harris R, Dowd S, Smith C, Kellermayer R (2011) Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 20:1687–1696

    Article  CAS  Google Scholar 

  21. Mikael L, Deng L, Paul L, Selhub J, Rozen R (2013) Moderately high intake of folic acid has a negative impact on mouse embryonic development. Birth Defects Res A Clin Mol Teratol 97:47–52

    Article  CAS  Google Scholar 

  22. Pickell L, Brown K, Li D, Wang X, Deng L, Wu Q, Selhub J, Luo L, Jerome-Majewska L, Rozen R (2011) High intake of folic acid disrupts embryonic development in mice. Birth Defects Res A Clin Mol Teratol 91:8–19

    Article  CAS  Google Scholar 

  23. Bininda-Emonds O, Cardillo M, Jones K, MacPhee R, Beck R, Grenyer R, Price S, Vos R, Gittleman J, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  CAS  Google Scholar 

  24. Lunney J (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184

    Article  CAS  Google Scholar 

  25. Guilloteau P, Zabielski R, Hammon H, Metges C (2010) Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Res Rev 23:4–22

    Article  Google Scholar 

  26. Oster M, Muráni E, Metges C, Ponsuksili S, Wimmers K (2011) A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model. PLoS One 6:e21691

    Article  CAS  Google Scholar 

  27. Oster M, Muráni E, Metges C, Ponsuksili S, Wimmers K (2012) A low protein diet during pregnancy provokes a lasting shift of hepatic expression of genes related to cell cycle throughout ontogenesis in a porcine model. BMC Genomics 13:93

    Article  CAS  Google Scholar 

  28. Valle M, Guay F, Beaudry D, Matte J, Blouin R et al (2002) Effects of breed, parity, and folic acid supplement on the expression of folate metabolism genes in endometrial and embryonic tissues from sows in early pregnancy. Biol Reprod 67:1259–1267

    Article  Google Scholar 

  29. Liu J, Chen D, Yu B, Mao X (2011) Effect of maternal folic acid supplementation on hepatic one-carbon unit associated gene expressions in newborn piglets. Mol Biol Rep 38:3849–3856

    Article  CAS  Google Scholar 

  30. Rucker RB (2007) Allometric scaling, metabolic body size and interspecies comparison of basal nutritional requirements. J Anim Physiol Anim Nutr 91:148–156

    Article  CAS  Google Scholar 

  31. Zeyner A, Harris P (2013) Vitamins. In: Geor R, Harris P, Coenen M (eds) Equine applied and clinical nutrition. Saunders Elsevier, Philadelphia, pp 168–189

    Chapter  Google Scholar 

  32. AfBN (2014) Empfehlungen zur Energie- und Nährstoffversorgung von Pferden. DLG-Verlag, Frankfurt (Main)

    Google Scholar 

  33. AfBN (2005) Communications of the Committee for Requirement Standards of the Society of Nutrition Physiology: standardised precaecal digestibility of amino acids in feedstuffs for pigs—methods and concepts. Proc Soc Nutr Physiol 14:185–205

    Google Scholar 

  34. Deutsche Gesellschaft für Ernährung e.V. (DGE) (2013) Referenzwerte für die Nährstoffzufuhr. Umschau Braus GmbH Verlagsgesellschaft, Frankfurt (Main)

    Google Scholar 

  35. Reeves P, Nielsen F, Fahey G (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  36. AfBN (2006) Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. 10: Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen. Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie. DLG-Verlag, Frankfurt (Main)

  37. Braunschweig M, Jagannathan V, Gutzwiller A, Bee G (2012) Investigations on transgenerational epigenetic response down the male line in f2 pigs. PLoS One 7:e30583

    Article  CAS  Google Scholar 

  38. Bruggmann R, Jagannathan V, Braunschweig M (2013) In search of epigenetic marks in testes and sperm cells of differentially fed boars. PLoS One 8:e78691

    Article  CAS  Google Scholar 

  39. Bielanska-Osuchowska Z, Krzynwek-Wojciechowska J (1990) Morphometric investigations of the pig developing liver during the prenatal period. Pol Arch Weter 30:7–16

    CAS  Google Scholar 

  40. Bielanska-Osuchowska Z (1996) Ultrastructural and stereological studies of hepatocytes in prenatal development of swine. Folia Morphol (Warsz) 55:1–19

    CAS  Google Scholar 

  41. Ponsuksili S, Muráni E, Walz C, Schwerin M, Wimmers K (2007) Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol Genomics 29:267–279

    Article  CAS  Google Scholar 

  42. Kauffmann A, Gentleman R, Huber W (2009) arrayqualitymetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25:415–416

    Article  CAS  Google Scholar 

  43. Storey J, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  CAS  Google Scholar 

  44. Edgar R, Domrachev M, Lash A (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  Google Scholar 

  45. Naraballobh W, Chomdej S, Muráni E, Wimmers K, Ponsuksili S (2010) Annotation and in silico localization of the affymetrix genechip porcine genome array. Arch Anim Breed 53:230–238

    CAS  Google Scholar 

  46. Hossenlopp P, Seurin D, Segovia-Quinson B, Hardouin S, Binoux M (1986) Analysis of serum insulin-like growth factor binding proteins using western blotting: use of the method for titration of the binding proteins and competitive binding studies. Anal Biochem 154:138–143

    Article  CAS  Google Scholar 

  47. Laeger T, Wirthgen E, Piechotta M, Metzger F, Metges C, Kuhla B, Hoeflich A (2014) Effects of parturition and feed restriction on concentrations and distribution of the insulin-like growth factor-binding proteins in plasma and cerebrospinal fluid of dairy cows. J Dairy Sci 97:2876–2885

    Article  CAS  Google Scholar 

  48. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  49. Ullrey D, Sprague J, Becker D, Miller E (1965) Growth of the swine fetus. J Anim Sci 24:711–717

    CAS  Google Scholar 

  50. Rehfeldt C, Lang I, Goers S, Hennig U, Kalbe C, Stabenow B, Bruessow K, Pfuhl R, Bellmann O, Nuernberg G, Otten W, Metges C (2011) Low and excess dietary protein levels during gestation affect growth and compositional traits in gilts and impair offspring fetal growth. J Anim Sci 89:329–341

    Article  CAS  Google Scholar 

  51. Osgerby J, Wathes D, Howard D, Gadd T (2002) The effect of maternal undernutrition on ovine fetal growth. J Endocrinol 173:131–141

    Article  CAS  Google Scholar 

  52. Rees W, Hay S, Brown D, Antipatis C, Palmer R (2000) Maternal protein deficiency causes hypermethylation of dna in the livers of rat fetuses. J Nutr 130:1821–1826

    CAS  Google Scholar 

  53. Rees W, Hay S, Cruickshank M (2006) An imbalance in the methionine content of the maternal diet reduces postnatal growth in the rat. Metabolism 55:763–770

    Article  CAS  Google Scholar 

  54. Maloney C, Hay S, Rees W (2009) The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring. Br J Nutr 101:1333–1340

    Article  CAS  Google Scholar 

  55. Roberfroid D, Huybregts L, Lanou H, Habicht J, Henry M, Meda N, Kolsteren P (2012) Prenatal micronutrient supplements cumulatively increase fetal growth. J Nutr 142:548–554

    Article  CAS  Google Scholar 

  56. Fekete K, Berti C, Trovato M, Lohner S, Dullemeijer C, Souverein O, Cetin I, Decsi T (2012) Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutr J 11:75

    Article  CAS  Google Scholar 

  57. Hoeflich A, Bünger L, Nedbal S, Renne U, Elmlinger M, Blum W, Bruley C, Kolb H, Wolf E (2004) Growth selection in mice reveals conserved and redundant expression patterns of the insulin-like growth factor system. Gen Comp Endocrinol 136:248–259

    Article  CAS  Google Scholar 

  58. Kampman K, Ramsay T, White M (1993) Developmental changes in hepatic IGF-2 and IGFBP-2 mRNA levels in intrauterine growth-retarded and control swine. Comp Biochem Physiol B 104:415–421

    CAS  Google Scholar 

  59. Tilley R, McNeil C, Ashworth C, Page K, McArdle H (2007) Altered muscle development and expression of the insulin-like growth factor system in growth retarded fetal pigs. Domest Anim Endocrinol 32:167–177

    Article  CAS  Google Scholar 

  60. Gay E, Seurin D, Babajko S, Doublier S, Cazillis M, Binoux M (1997) Liver-specific expression of human insulin-like growth factor binding protein-1 in transgenic mice: repercussions on reproduction, ante- and perinatal mortality and postnatal growth. Endocrinology 138:2937–2947

    CAS  Google Scholar 

  61. Hoeflich A, Wu M, Mohan S, Föll J, Wanke R, Froehlich T, Arnold G, Lahm H, Kolb H, Wolf E (1999) Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology 140:5488–5496

    Article  CAS  Google Scholar 

  62. D’Ercole A, Dai Z, Xing Y, Boney C, Wilkie M, Lauder J, Han V, Clemmons D (1994) Brain growth retardation due to the expression of human insulin like growth factor binding protein-1 in transgenic mice: an in vivo model for the analysis of igf function in the brain. Brain Res Dev Brain Res 82:213–222

    Article  Google Scholar 

  63. Hausman G, Campion D, Buonomo F (1991) Concentration of insulin-like growth factors (IGF-I and IGF-II) in tissues of developing lean and obese pig fetuses. Growth Dev Aging 55:43–52

    CAS  Google Scholar 

  64. Sohlström A, Katsman A, Kind K, Roberts C, Owens P, Robinson J, Owens J (1998) Food restriction alters pregnancy-associated changes in IGF and IGFBP in the guinea pig. Am J Physiol 274:E410–E416

    Google Scholar 

  65. Donovan S, McNeil L, Jiménez-Flores R, Odle J (1994) Insulin-like growth factors and insulin-like growth factor binding proteins in porcine serum and milk throughout lactation. Pediatr Res 36:159–168

    Article  CAS  Google Scholar 

  66. Peng M, Abribat T, Calvo E, LeBel D, Palin M, Bernatchez G, Morisset J, Pelletier G (1998) Ontogeny of insulin-like growth factors (IGF), IGF binding proteins, IGF receptors, and growth hormone receptor mRNA levels in porcine pancreas. J Anim Sci 76:1178–1188

    CAS  Google Scholar 

  67. Wyrwoll C, Kerrigan D, Holmes M, Seckl J, Drake A (2012) Altered placental methyl donor transport in the dexamethasone programmed rat. Placenta 33:220–223

    Article  CAS  Google Scholar 

  68. Nijhout H, Reed M, Budu P, Ulrich C (2004) A mathematical model of the folate cycle: new insights into folate homeostasis. J Biol Chem 279:55008–55016

    Article  CAS  Google Scholar 

  69. McNeil C, Hay S, Rucklidge G, Reid M, Duncan G, Rees W (2009) Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat. Br J Nutr 102:1445–1452

    Article  CAS  Google Scholar 

  70. Pooya S, Blaise S, Moreno Garcia M, Giudicelli J, Alberto J, Guéant-Rodriguez R, Jeannesson E, Gueguen N, Bressenot A, Nicolas B, Malthiery Y, Daval J, Peyrin-Biroulet L, Bronowicki J, Guéant J (2012) Methyl donor deficiency impairs fatty acid oxidation through pgc-1alpha hypomethylation and decreased er-alpha, err-alpha, and hnf-4alpha in the rat liver. J Hepatol 57:344–351

    Article  CAS  Google Scholar 

  71. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol 279:19–30

    Article  Google Scholar 

  72. Lillycrop K, Rodford J, Garratt E, Slater-Jefferies J, Godfrey K et al (2010) Maternal protein restriction with or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats. Br J Nutr 103:1711–1719

    Article  CAS  Google Scholar 

  73. Burdge G, Hoile S, Lillycrop K (2012) Epigenetics: are there implications for personalised nutrition? Curr Opin Clin Nutr Metab Care 15:442–447

    Article  CAS  Google Scholar 

  74. Rees W, Wilson F, Maloney C (2006) Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet. J Nutr 136:1701S–1705S

    CAS  Google Scholar 

  75. Ciappio E, Mason J, Crott J (2011) Maternal one-carbon nutrient intake and cancer risk in offspring. Nutr Rev 69:561–571

    Article  Google Scholar 

  76. Parker M, Rifas-Shiman SL, Oken E, Belfort MB, Jaddoe VW, Gillman MW (2012) Second trimester estimated fetal weight and fetal weight gain predict childhood obesity. J Pediatr 161:864–870

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Hannelore Tychsen, Angela Garve, Annette Jugert, and Kerstin Jahnke for their excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wimmers.

Ethics declarations

Funding

This work was partially funded by the 6th Research Framework Programme of the European Union as part of the SABRE project (cutting-edge genomics for sustainable animal breeding).

Conflict of interest

The authors have declared that no competing interests exist. The manuscript does not contain clinical studies or patient data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table S1

Selected transcripts used for qPCR. Primers and correlation between microarray and qPCR are displayed (XLSX 293 kb)

Supplemental Table S2

Transcripts differing in mRNA levels between MET and CON liver samples (XLSX 89 kb)

Supplemental Table S3

Pathways altered between two ontogenetic stages within CON group in liver tissue (XLSX 14 kb)

Supplemental Table S4

Pathways altered between two ontogenetic stages within MET group in liver tissue (XLSX 14 kb)

Supplemental Table S5

IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-6 levels in foetal liver tissue (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oster, M., Nuchchanart, W., Trakooljul, N. et al. Methylating micronutrient supplementation during pregnancy influences foetal hepatic gene expression and IGF signalling and increases foetal weight. Eur J Nutr 55, 1717–1727 (2016). https://doi.org/10.1007/s00394-015-0990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0990-2

Keywords

Navigation