Skip to main content
Log in

Energiemetabolismus des Immunsystems

Konsequenzen bei chronischen Entzündungen

Energy metabolism of the immune system

Consequences in chronic inflammation

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Energie ist die Währung des Lebens. Der systemische und zelluläre Energiestoffwechsel spielen eine wesentliche Rolle für die Energieversorgung des ruhenden und aktivierten Immunsystems, und das trifft auch bei chronisch entzündlichen Erkrankungen zu.

Ziel der Arbeit

In dieser Darstellung werden beide Komponenten des Energiestoffwechsels bei Gesundheit und Entzündung beleuchtet.

Material und Methoden

Es wurde eine Literaturrecherche mittels PubMed, Embase und der Cochrane Library durchgeführt. Die Information wird im Sinne einer narrativen Übersichtsarbeit vorgestellt.

Ergebnisse

Ein chronisch aktiviertes Immunsystem akquiriert große Mengen an energiereichen Substraten, die für andere Funktionen des Körpers verloren gehen. Dabei konkurrieren insbesondere das Immunsystem und das Gehirn. Folgeprobleme dieses Wettstreits sind viele bekannte Folgekrankheiten wie Müdigkeit, Angst, Depression, Anorexie, Schlafprobleme, Sarkopenie, Osteoporose, Insulinresistenz, Hypertension und andere. Die dauerhafte Veränderung im Gehirn bewirkt eine langfristige Aufrechterhaltung der Folgeprobleme auch in der Krankheitsremission. In der immunzellulären Energieversorgung findet bei chronischer Entzündung typischerweise eine Umstellung auf die Glykolyse (hin zu Laktat, das eigene Funktionen aufweist) und den Pentosephosphatweg bei Störungen der mitochondrialen Funktion statt. Die chronischen Veränderungen führen in Immunzellen von Patienten mit rheumatoider Arthritis (RA) zu einer Störung des Krebszyklus. Daran ist auch die hypoxische Situation im entzündeten Gewebe beteiligt. Es werden Effektorfunktionen von regulatorischen Funktionen unterschieden.

Diskussion

Auf dem Boden der genannten Energieveränderungen können neben bekannten auch neuartige Therapievorschläge gemacht werden.

Abstract

Background

Energy is the currency of life. The systemic and intracellular energy metabolism plays an essential role for the energy supply of the resting and activated immune system and this also applies to chronic inflammatory diseases.

Objective

This presentation examines both components of the systemic and cellular energy metabolism in health and chronic inflammation.

Material and methods

A literature search was conducted using PubMed, Embase and the Cochrane Library. The information is presented in the form of a narrative review.

Results

A chronically activated immune system acquires large amounts of energy-rich substrates that are lost for other functions of the body. In particular, the immune system and the brain are in competition. The consequences of this competition are many known diseases, such as fatigue, anxiety, depression, anorexia, sleep problems, sarcopenia, osteoporosis, insulin resistance, hypertension and others. The permanent change in the brain causes long-term alterations that stimulate disease sequelae even after disease remission. In the intracellular energy supply, chronic inflammation typically involves a conversion to glycolysis (to lactate, which has its own regulatory functions) and the pentose phosphate pathway in disorders of mitochondrial function. The chronic changes in immune cells of patients with rheumatoid arthritis (RA) lead to a disruption of the citric acid cycle (Krebs cycle). The hypoxic situation in the inflamed tissue stimulates many alterations. A differentiation is made between effector functions and regulatory functions of immune cells.

Conclusion

Based on the energy changes mentioned, novel treatment suggestions can be made in addition to those already known in energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alivernini S, Macdonald L, Elmesmari A et al (2020) Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med 26:1295–1306

    CAS  PubMed  Google Scholar 

  2. Bar-Peled L, Kory N (2022) Principles and functions of metabolic compartmentalization. Nat Metab 4:1232–1244

    PubMed  PubMed Central  Google Scholar 

  3. Basu N, Kaplan CM, Ichesco E et al (2019) Functional and structural magnetic resonance imaging correlates of fatigue in patients with rheumatoid arthritis. Rheumatology 58:1822–1830

    PubMed  Google Scholar 

  4. Björntorp P (1999) Neuroendocrine perturbations as a cause of insulin resistance. Diabetes Metab Res Rev 15:427–441

    PubMed  Google Scholar 

  5. Blaxter K (1989) Energy metabolism in animals and man. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney

    Google Scholar 

  6. Bole GG (1962) Synovial fluid lipids in normal individuals and patients with rheumatoid arthritis. Arthritis Rheum 5:589–601

    CAS  PubMed  Google Scholar 

  7. Boudjani R, Challal S, Semerano L et al (2022) Impact of different types of exercise programs on ankylosing spondylitis: a systematic review and meta-analysis. Disabil Rehabil 11:1–12

    Google Scholar 

  8. Bustamante MF, Oliveira PG, Garcia-Carbonell R et al (2018) Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann Rheum Dis 77:1636–1643

    CAS  PubMed  Google Scholar 

  9. Chen Y, Gaber T (2021) Hypoxia/HIF modulates immune responses. Biomedicines 9(3):260. https://doi.org/10.3390/biomedicines9030260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ciurtin C, Cojocaru VM, Miron IM et al (2006) Correlation between different components of synovial fluid and pathogenesis of rheumatic diseases. Rom J Intern Med 44:171–181

    PubMed  Google Scholar 

  11. Cronstein BN, Aune TM (2020) Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 16:145–154

    CAS  PubMed  Google Scholar 

  12. Dang EV, Barbi J, Yang HY et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146:772–784

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Darwin C (1963) Die Entstehung der Arten. Reclam, Stuttgart

    Google Scholar 

  14. de Oliveira PG, Farinon M, Sanchez-Lopez E et al (2019) Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front Immunol 10:1743

    PubMed  PubMed Central  Google Scholar 

  15. Diani M, Altomare G, Reali E (2015) T cell responses in psoriasis and psoriatic arthritis. Autoimmun Rev 14:286–292

    CAS  PubMed  Google Scholar 

  16. Fearon U, Canavan M, Biniecka M et al (2016) Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 12:385–397

    CAS  PubMed  Google Scholar 

  17. Gaber T, Chen Y, Krauß PL et al (2019) Metabolism of T lymphocytes in health and disease. Int Rev Cell Mol Biol 342:95–148

    CAS  PubMed  Google Scholar 

  18. Gaber T, Schellmann S, Erekul KB et al (2011) Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor‑1 alpha function and differentially influences human CD4+ T cell proliferation under hypoxia. J Immunol 186:764–774

    CAS  PubMed  Google Scholar 

  19. Gaber T, Strehl C, Buttgereit F (2017) Metabolic regulation of inflammation. Nat Rev Rheumatol 13:267–279

    PubMed  Google Scholar 

  20. Gallagher L, Cregan S, Biniecka M et al (2020) Insulin-resistant pathways are associated with disease activity in rheumatoid arthritis and are subject to disease modification through metabolic reprogramming: a potential novel therapeutic approach. Arthritis Rheumatol 72:896–902

    CAS  PubMed  Google Scholar 

  21. Gao W, Mccormick J, Connolly M et al (2015) Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. Ann Rheum Dis 74:1275–1283

    CAS  PubMed  Google Scholar 

  22. Gelderman KA, Hultqvist M, Pizzolla A et al (2007) Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J Clin Invest 117:3020–3028

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghazizadeh R, Tosa M, Ghazizadeh M (2011) Clinical improvement in psoriasis with treatment of associated hyperlipidemia. Am J Med Sci 341:394–398

    PubMed  Google Scholar 

  24. Gobelet C, Gerster JC (1984) Synovial fluid lactate levels in septic and non-septic arthritides. Ann Rheum Dis 43:742–745

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goodson N, Marks J, Lunt M et al (2005) Cardiovascular admissions and mortality in an inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 1990s. Ann Rheum Dis 64:1595–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gwinnutt JM, Wieczorek M, Cavalli G et al (2022) Effects of physical exercise and body weight on disease-specific outcomes of people with rheumatic and musculoskeletal diseases (RMDs): systematic reviews and meta-analyses informing the 2021 EULAR recommendations for lifestyle improvements in people with RMDs. RMD Open 8:e2168

    PubMed  PubMed Central  Google Scholar 

  27. Haas R, Smith J, Rocher-Ros V et al (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13:e1002202

    PubMed  PubMed Central  Google Scholar 

  28. Hartmann AM, Dell’oro M, Spoo M et al (2022) To eat or not to eat-an exploratory randomized controlled trial on fasting and plant-based diet in rheumatoid arthritis (NutriFast-Study). Front Nutr 9:1030380

    PubMed  PubMed Central  Google Scholar 

  29. Henderson B, Bitensky L, Chayen J (1979) Glycolytic activity in human synovial lining cells in rheumatoid arthritis. Ann Rheum Dis 38:63–67

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hess A, Axmann R, Rech J et al (2011) Blockade of TNF‑α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci U S A 108:3731–3736

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hinoi E, Yoneda Y (2011) Possible involvement of glutamatergic signaling machineries in pathophysiology of rheumatoid arthritis. J Pharmacol Sci 116:248–256

    CAS  PubMed  Google Scholar 

  32. Hu F, Shi L, Mu R et al (2013) Hypoxia-inducible factor-1α and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis. PLoS One 8:e72650

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibitokou SA, Dillon BE, Sinha M et al (2018) Early inhibition of fatty acid synthesis reduces generation of memory precursor effector T cells in chronic infection. J Immunol 200:643–656

    CAS  PubMed  Google Scholar 

  34. Iemitsu M, Itoh M, Fujimoto T et al (2000) Whole-body energy mapping under physical exercise using positron emission tomography. Med Sci Sports Exerc 32:2067–2070

    CAS  PubMed  Google Scholar 

  35. Kang KY, Kim YK, Yi H et al (2013) Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol 16:85–92

    CAS  PubMed  Google Scholar 

  36. Kaplan CM, Schrepf A, Ichesco E et al (2020) Association of inflammation with pronociceptive brain connections in rheumatoid arthritis patients with concomitant fibromyalgia. Arthritis Rheumatol 72:41–46

    CAS  PubMed  Google Scholar 

  37. Klysz D, Tai X, Robert PA et al (2015) Glutamine-dependent α‑ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 8:ra97

    PubMed  Google Scholar 

  38. Komatsu N, Okamoto K, Sawa S et al (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20:62–68

    CAS  PubMed  Google Scholar 

  39. Korte SM, Straub RH (2019) Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology 58:v35–v50

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuhnke A, Burmester GR, Krauss S et al (2003) Bioenergetics of immune cells to assess rheumatic disease activity and efficacy of glucocorticoid treatment. Ann Rheum Dis 62:133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kvacskay P, Yao N, Schnotz JH et al (2021) Increase of aerobic glycolysis mediated by activated T helper cells drives synovial fibroblasts towards an inflammatory phenotype: new targets for therapy? Arthritis Res Ther 23:56

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lazaridou A, Kim J, Cahalan CM et al (2017) Effects of cognitive-behavioral therapy (CBT) on brain connectivity supporting catastrophizing in fibromyalgia. Clin J Pain 33:215–221

    PubMed  PubMed Central  Google Scholar 

  43. Levring TB, Hansen AK, Nielsen BL et al (2012) Activated human CD4+ T cells express transporters for both cysteine and cystine. Sci Rep 2:266

    PubMed  PubMed Central  Google Scholar 

  44. Li G, Zhang Y, Qian Y et al (2013) Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol 53:227–236

    CAS  PubMed  Google Scholar 

  45. Li Y, Shen Y, Jin K et al (2019) The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab 30:477–492.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liao CD, Chen HC, Huang SW et al (2022) Exercise therapy for sarcopenia in rheumatoid arthritis: a meta-analysis and meta-regression of randomized controlled trials. Clin Rehabil 36:145–157

    PubMed  Google Scholar 

  47. Lu Y, Liu H, Bi Y et al (2018) Glucocorticoid receptor promotes the function of myeloid-derived suppressor cells by suppressing HIF1α-dependent glycolysis. Cell Mol Immunol 15:618–629

    CAS  PubMed  Google Scholar 

  48. Macintyre AN, Gerriets VA, Nichols AG et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20:61–72

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mawla I, Ichesco E, Zöllner HJ et al (2021) Greater somatosensory afference with acupuncture increases primary somatosensory connectivity and alleviates fibromyalgia pain via insular γ‑aminobutyric acid: a randomized neuroimaging trial. Arthritis Rheumatol 73:1318–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mcgarry T, Orr C, Wade S et al (2018) JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol 70:1959–1970

    CAS  PubMed  Google Scholar 

  51. Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303

    CAS  PubMed  Google Scholar 

  52. Michopoulos F, Karagianni N, Whalley NM et al (2016) Targeted metabolic profiling of the Tg197 mouse model reveals itaconic acid as a marker of rheumatoid arthritis. J Proteome Res 15:4579–4590

    CAS  PubMed  Google Scholar 

  53. Moreno-Aurioles VR, Sobrino F (1991) Glucocorticoids inhibit fructose 2,6-bisphosphate synthesis in rat thymocytes. Opposite effect of cycloheximide. Biochim Biophys Acta 1091:96–100

    CAS  PubMed  Google Scholar 

  54. Nakaya M, Xiao Y, Zhou X et al (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40:692–705

    CAS  PubMed  PubMed Central  Google Scholar 

  55. O’neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    PubMed  PubMed Central  Google Scholar 

  56. O’Sullivan D, van der Windt GJ, Huang SC et al (2014) Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41:75–88

    PubMed  PubMed Central  Google Scholar 

  57. Okano T, Saegusa J, Nishimura K et al (2017) 3‑bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci Rep 7:42412

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pedard M, Demougeot C, Prati C et al (2018) Brain-derived neurotrophic factor in adjuvant-induced arthritis in rats. Relationship with inflammation and endothelial dysfunction. Prog Neuropsychopharmacol Biol Psychiatry 82:249–254

    CAS  PubMed  Google Scholar 

  59. Petrasca A, Phelan JJ, Ansboro S et al (2020) Targeting bioenergetics prevents CD4 T cell-mediated activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology 59:2816–2828

    CAS  PubMed  Google Scholar 

  60. Pietrzak A, Michalak-Stoma A, Chodorowska G et al (2010) Lipid disturbances in psoriasis: an update. Mediators Inflamm 2010:535612. https://doi.org/10.1155/2010/535612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pongratz G, Straub RH (2013) Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nat Rev Rheumatol 9:117–126

    CAS  PubMed  Google Scholar 

  62. Pontzer H (2021) Burn—new research blows the lid off how we really burn calories, lose weight, and stay healthy. Avery, Penguin Random House, New York

    Google Scholar 

  63. Pucino V, Certo M, Bulusu V et al (2019) Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab 30:1055–1074.e8

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiu J, Wu B, Goodman SB et al (2021) Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front Immunol 12:652771

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rassow J, Hauser K, Netzker R et al (2008) Biochemistry. Thieme, Stuttgart

    Google Scholar 

  66. Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    CAS  PubMed  Google Scholar 

  67. Ruiz-Limón P, Ortega R, Arias de la Rosa I et al (2017) Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl Res 183:87–103

    PubMed  Google Scholar 

  68. Schnoor M, Stradal TE, Rottner K (2018) Cortactin: cell functions of a multifaceted actin-binding protein. Trends Cell Biol 28:79–98

    CAS  PubMed  Google Scholar 

  69. Schrepf A, Kaplan CM, Ichesco E et al (2018) A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis. Nat Commun 9:2243

    PubMed  PubMed Central  Google Scholar 

  70. Shambrook P, Kingsley M, Taylor N et al (2018) Accumulated or continuous exercise for glycaemic regulation and control: a systematic review with meta-analysis. BMJ Open Sport Exerc Med 4:e470

    PubMed  PubMed Central  Google Scholar 

  71. Shen Y, Wen Z, Li Y et al (2017) Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nat Immunol 18:1025–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi M, Wang J, Xiao Y et al (2018) Glycogen metabolism and rheumatoid arthritis: the role of glycogen synthase 1 in regulation of synovial inflammation via blocking AMP-activated protein kinase activation. Front Immunol 9:1714

    PubMed  PubMed Central  Google Scholar 

  73. Shirai T, Nazarewicz RR, Wallis BB et al (2016) The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med 213:337–354

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sochal M, Ditmer M, Gabryelska A et al (2022) The role of brain-derived neurotrophic factor in immune-related diseases: a narrative review. J Clin Med 11:6023

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Steiner G, Urowitz MB (2009) Lipid profiles in patients with rheumatoid arthritis: mechanisms and the impact of treatment. Semin Arthritis Rheum 38:372–381

    CAS  PubMed  Google Scholar 

  76. Straub RH (2018) Altern, Müdigkeit und Entzündungen verstehen – Wenn Immunsystem und Gehirn um die Energie im Körper ringen. Springer, Berlin, Heidelberg

    Google Scholar 

  77. Straub RH (2017) The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat Rev Rheumatol 13:743–751

    CAS  PubMed  Google Scholar 

  78. Straub RH (2012) Evolutionary medicine and chronic inflammatory state—known and new concepts in pathophysiology. J Mol Med 90:523–534

    PubMed  Google Scholar 

  79. Straub RH (2014) Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res Ther 16(S4):1–15

    Google Scholar 

  80. Straub RH (2014) Interaction of the endocrine system with inflammation: a function of energy and volume regulation. Arthritis Res Ther 16:203–217

    PubMed  PubMed Central  Google Scholar 

  81. Straub RH, Cutolo M, Buttgereit F et al (2010) Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 267:543–560

    CAS  PubMed  Google Scholar 

  82. Straub RH, Schradin C (2016) Chronic inflammatory systemic diseases: an evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health 2016:37–51

    PubMed  PubMed Central  Google Scholar 

  83. Swerdlow S, Mccoll K, Rong Y et al (2008) Apoptosis inhibition by Bcl‑2 gives way to autophagy in glucocorticoid-treated lymphocytes. Autophagy 4:612–620

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Takahashi S, Saegusa J, Sendo S et al (2017) Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 19:76

    PubMed  PubMed Central  Google Scholar 

  85. Urlacher SS, Snodgrass JJ, Dugas LR et al (2019) Constraint and trade-offs regulate energy expenditure during childhood. Sci Adv 5:eaax1065

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Veale DJ, Orr C, Fearon U (2017) Cellular and molecular perspectives in rheumatoid arthritis. Semin Immunopathol 39:343–354

    CAS  PubMed  Google Scholar 

  87. Viikari J, Jalava S, Terho T (1980) Synovial fluid lipids in rheumatoid arthritis. Scand J Rheumatol 9:164–166

    CAS  PubMed  Google Scholar 

  88. Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Weyand CM, Goronzy JJ (2021) The immunology of rheumatoid arthritis. Nat Immunol 22:10–18

    CAS  PubMed  Google Scholar 

  90. Weyand CM, Goronzy JJ (2017) Immunometabolism in early and late stages of rheumatoid arthritis. Nat Rev Rheumatol 13:291–301

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Weyand CM, Goronzy JJ (2020) Immunometabolism in the development of rheumatoid arthritis. Immunol Rev 294:177–187

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu B, Qiu J, Zhao TV et al (2020) Succinyl-CoA ligase deficiency in pro-inflammatory and tissue-invasive T cells. Cell Metab 32:967–980.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu Q, Inman RD, Davis KD (2014) Fatigue in ankylosing spondylitis is associated with the brain networks of sensory salience and attention. Arthritis Rheumatol 66:295–303

    PubMed  Google Scholar 

  94. Yan H, Zhou HF, Hu Y et al (2015) Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J Rheum Dis Treat 1:5

    PubMed  PubMed Central  Google Scholar 

  95. Yang Z, Fujii H, Mohan SV et al (2013) Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 210:2119–2134

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang Z, Shen Y, Oishi H et al (2016) Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med 8:331ra338

    Google Scholar 

  97. Yu HH, Chen PC, Yang YH et al (2015) Statin reduces mortality and morbidity in systemic lupus erythematosus patients with hyperlipidemia: a nationwide population-based cohort study. Atherosclerosis 243:11–18

    CAS  PubMed  Google Scholar 

  98. Zeng H, Cohen S, Guy C et al (2016) mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45:540–554

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer H. Straub.

Ethics declarations

Interessenkonflikt

R.H. Straub, G. Pongratz, F. Buttgereit und T. Gaber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Christoph Baerwald, Leipzig

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straub, R.H., Pongratz, G., Buttgereit, F. et al. Energiemetabolismus des Immunsystems. Z Rheumatol 82, 479–490 (2023). https://doi.org/10.1007/s00393-023-01389-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-023-01389-4

Schlüsselwörter

Keywords

Navigation