Skip to main content
Log in

Mesenchymale Stammzelltherapie bei Autoimmunerkrankungen

Mesenchymal stem cell treatment in autoimmune diseases

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Mesenchymale Stroma- oder Stammzellen (MSC) besitzen starke immunmodulierende Eigenschaften. Durch ihr großes Potenzial zur Differenzierung in verschiedene Zellformen sind sie zudem in der Lage, die Reparatur von Gewebeschäden in Gang zu setzen. Bei einer Reihe von rheumatischen Erkrankungen haben sich in vitro Einschränkungen der MSC-Funktion darstellen lassen, auch wenn die Bedeutung dieser Phänomene für die Pathogenese jener Krankheiten nicht abschließend geklärt ist. Dennoch könnte v. a. die allogene, möglicherweise auch die autologe MSC-Transplantation (MSCT) ein interessantes Instrument für die Therapie schwerer rheumatologischer Autoimmunerkrankungen darstellen. Erste klinische Studien haben positive Effekte bei systemischem Lupus erythematodes, der systemischen Sklerodermie, dem Sjögren-Syndrom und anderen Erkrankungen des rheumatischen Formenkreises berichtet. Allerdings sind die Fragen nach der langfristigen Wirkung und Sicherheit ebenso unbeantwortet wie die Frage nach der besten Quelle von MSC, der optimalen Kultivierungstechnik und der effektivsten Applikationsart.

Abstract

Mesenchymal stromal or stem cells (MSC) possess strong immunomodulatory properties. Due to their impressive potential to differentiate into various cell types they are capable of inducing mechanisms of tissue repair. Experimental data have demonstrated impaired MSC function in several rheumatic diseases in vitro; however, the relevance of these phenomena for the pathogenesis of rheumatic disorders has not been convincingly demonstrated. Nevertheless, allogeneic MSC transplantation (MSCT), and possibly autologous MSCT as well, could prove to be an interesting instrument for the treatment of autoimmune rheumatic diseases. The first clinical trials have demonstrated positive effects in systemic lupus erythematosus, systemic sclerosis and Sjogren’s syndrome; however, questions regarding the long-term benefits and safety as well as the best source, the optimal cultivation technique and the most effective way of application of MSC are still unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alexander T, Badoglio M, Henes J et al. (2020) Autologe hämatopoetische Stammzelltransplantation bei Autoimmunerkrankungen. Z Rheumatol. https://doi.org/10.1007/s00393-020-00795-2

    Article  PubMed  Google Scholar 

  2. Zupan J, Drobnic M, Strazar K (2019) Synovium-derived mesenchymal stem/stromal cells and their promise for cartilage regeneration. Adv Exp Med Biol. https://doi.org/10.1007/5584_2019_381

    Article  Google Scholar 

  3. To K, Zhang B, Romain K et al (2019) Synovium-derived mesenchymal stem cell transplantation in cartilage regeneration: a PRISMA review of in vivo studies. Front Bioeng Biotechnol 7:314. https://doi.org/10.3389/fbioe.2019.00314

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu H, Huang S, Wang J et al (2019) Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells. Int J Biol Macromol 137:433–441. https://doi.org/10.1016/j.ijbiomac.2019.06.246

    Article  CAS  PubMed  Google Scholar 

  5. Esmaeilzade B, Artimani T, Amiri I et al (2019) Dimethyloxalylglycine preconditioning enhances protective effects of bone marrow-derived mesenchymal stem cells in Abeta-induced Alzheimer disease. Physiol Behav 199:265–272. https://doi.org/10.1016/j.physbeh.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  6. Hamed GM, Morsy WE, Hamid MSA et al (2019) Effect of bone marrow-derived mesenchymal stem cells on ischaemic-reperfused hearts in adult rats with established chronic kidney disease. Int J Stem Cells 12:304–314. https://doi.org/10.15283/ijsc18114

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cetinkaya B, Unek G, Kipmen-Korgun D et al (2019) Effects of human placental amnion derived mesenchymal stem cells on proliferation and apoptosis mechanisms in chronic kidney disease in the rat. Int J Stem Cells 12:151–161. https://doi.org/10.15283/ijsc18067

    Article  CAS  PubMed  Google Scholar 

  8. Qi Y, Ma J, Li S et al (2019) Applicability of adipose-derived mesenchymal stem cells in treatment of patients with type 2 diabetes. Stem Cell Res Ther 10:274. https://doi.org/10.1186/s13287-019-1362-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ding SSL, Subbiah SK, Khan MSA et al (2019) Empowering mesenchymal stem cells for ocular degenerative disorders. Int J Stem Cells. https://doi.org/10.3390/ijms20071784

    Article  Google Scholar 

  10. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  11. Friedenstein AJ, Chailakhyan RK, Latsinik NV et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340. https://doi.org/10.1097/00007890-197404000-00001

    Article  CAS  PubMed  Google Scholar 

  12. Friedenstein AJ, Petrakova KV, Kurolesova AI et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  13. Maria AT, Maumus M, Le Quellec A et al (2017) Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol 52:234–259. https://doi.org/10.1007/s12016-016-8552-9

    Article  CAS  PubMed  Google Scholar 

  14. Montesinos JJ, Flores-Figueroa E, Castillo-Medina S et al (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11:163–176. https://doi.org/10.1080/14653240802582075

    Article  CAS  PubMed  Google Scholar 

  15. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213. https://doi.org/10.1242/jcs.02932

    Article  CAS  PubMed  Google Scholar 

  16. De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109. https://doi.org/10.1159/000071150

    Article  PubMed  Google Scholar 

  17. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  18. Maria AT, Toupet K, Maumus M et al (2016) Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J Autoimmun 70:31–39. https://doi.org/10.1016/j.jaut.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  19. Phinney DG, Sensebe L (2013) Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy 15:140–145. https://doi.org/10.1016/j.jcyt.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Luz-Crawford P, Kurte M, Bravo-Alegria J et al (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4:65. https://doi.org/10.1186/scrt216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mougiakakos D, Jitschin R, Johansson CC et al (2011) The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117:4826–4835. https://doi.org/10.1182/blood-2010-12-324038

    Article  CAS  PubMed  Google Scholar 

  22. Prigione I, Benvenuto F, Bocca P et al (2009) Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 27:693–702. https://doi.org/10.1634/stemcells.2008-0687

    Article  CAS  PubMed  Google Scholar 

  23. Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B‑cell functions. Blood 107:367–372. https://doi.org/10.1182/blood-2005-07-2657

    Article  CAS  PubMed  Google Scholar 

  24. Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126. https://doi.org/10.1182/blood-2004-02-0586

    Article  CAS  PubMed  Google Scholar 

  25. Luz-Crawford P, Djouad F, Toupet K et al (2016) Mesenchymal stem cell-derived Interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells 34:483–492. https://doi.org/10.1002/stem.2254

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt M, Muller LP, Keysser G et al (2013) Mesenchymal stroma cells (MSCs) for the treatment of rheumatic disease. Dtsch Med Wochenschr 138:1852–1855. https://doi.org/10.1055/s-0033-1343346

    Article  CAS  PubMed  Google Scholar 

  27. Luz-Crawford P, Noel D, Fernandez X et al (2012) Mesenchymal stem cells repress Th17 molecular program through the PD‑1 pathway. Plos One 7:e45272. https://doi.org/10.1371/journal.pone.0045272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Djouad F, Plence P, Bony C et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102:3837–3844. https://doi.org/10.1182/blood-2003-04-1193

    Article  CAS  PubMed  Google Scholar 

  29. Luz-Crawford P, Torres MJ, Noel D et al (2016) The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cells 34:456–469. https://doi.org/10.1002/stem.2244

    Article  CAS  PubMed  Google Scholar 

  30. Noel D, Caton D, Roche S et al (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314:1575–1584. https://doi.org/10.1016/j.yexcr.2007.12.022

    Article  CAS  PubMed  Google Scholar 

  31. Wegmeyer H, Broske AM, Leddin M et al (2013) Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev 22:2606–2618. https://doi.org/10.1089/scd.2013.0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bochev I, Elmadjian G, Kyurkchiev D et al (2008) Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B‑cell immunoglobulin production in vitro. Cell Biol Int 32:384–393. https://doi.org/10.1016/j.cellbi.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  33. Rivera-Izquierdo M, Cabeza L, Lainez-Ramos-Bossini A et al (2019) An updated review of adipose derived-mesenchymal stem cells and their applications in musculoskeletal disorders. Expert Opin Biol Ther 19:233–248. https://doi.org/10.1080/14712598.2019.1563069

    Article  CAS  PubMed  Google Scholar 

  34. Nie Y, Lau C, Lie A et al (2010) Defective phenotype of mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 19:850–859. https://doi.org/10.1177/0961203309361482

    Article  CAS  PubMed  Google Scholar 

  35. Kastrinaki MC, Sidiropoulos P, Roche S et al (2008) Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Ann Rheum Dis 67:741–749. https://doi.org/10.1136/ard.2007.076174

    Article  CAS  PubMed  Google Scholar 

  36. Cipriani P, Di Benedetto P, Ruscitti P et al (2014) Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: a link between vascular and fibrotic features. Arthritis Res Ther 16:442. https://doi.org/10.1186/s13075-014-0442-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun Y, Deng W, Geng L et al (2015) Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells. J Immunol Res. https://doi.org/10.1155/2015/284215

    Article  PubMed  PubMed Central  Google Scholar 

  38. Augello A, Tasso R, Negrini SM et al (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186. https://doi.org/10.1002/art.22511

    Article  CAS  PubMed  Google Scholar 

  39. Abdelmawgoud H, Saleh A (2018) Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med 27:873–880. https://doi.org/10.17219/acem/73720

    Article  PubMed  Google Scholar 

  40. Ma D, Xu K, Zhang G et al (2019) Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. Int J Immunopharmacol 74:105687. https://doi.org/10.1016/j.intimp.2019.105687

    Article  CAS  Google Scholar 

  41. Bouffi C, Bony C, Courties G et al (2010) IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. Plos One 5:e14247. https://doi.org/10.1371/journal.pone.0014247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toupet K, Maumus M, Luz-Crawford P et al (2015) Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. PLoS ONE 10:e114962. https://doi.org/10.1371/journal.pone.0114962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuo TK, Hung SP, Chuang CH et al (2008) Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134:2111–2121, 2121 e2111–2113. https://doi.org/10.1053/j.gastro.2008.03.015

    Article  PubMed  Google Scholar 

  44. Toupet K, Maumus M, Peyrafitte JA et al (2013) Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheum 65:1786–1794. https://doi.org/10.1002/art.37960

    Article  CAS  PubMed  Google Scholar 

  45. Spaggiari GM, Capobianco A, Becchetti S et al (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107:1484–1490. https://doi.org/10.1182/blood-2005-07-2775

    Article  CAS  PubMed  Google Scholar 

  46. Nauta AJ, Westerhuis G, Kruisselbrink AB et al (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120. https://doi.org/10.1182/blood-2005-11-011650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poggi A, Zocchi MR (2019) Immunomodulatory properties of mesenchymal stromal cells: still unresolved “yin and yang”. Curr Stem Cell Res Ther 14:344–350. https://doi.org/10.2174/1574888X14666181205115452

    Article  CAS  PubMed  Google Scholar 

  48. Neri S (2019) Genetic stability of mesenchymal stromal cells for regenerative medicine applications: a fundamental Biosafety aspect. IJMS. https://doi.org/10.3390/ijms20102406

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Cong X, Liu G et al (2013) Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev 22:3192–3202. https://doi.org/10.1089/scd.2013.0023

    Article  CAS  PubMed  Google Scholar 

  50. Park EH, Lim HS, Lee S et al (2018) Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: a phase Ia clinical trial. Stem Cells Transl Med 7:636–642. https://doi.org/10.1002/sctm.18-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghoryani M, Shariati-Sarabi Z, Tavakkol-Afshari J et al (2019) Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomed Pharmacother 109:1834–1840. https://doi.org/10.1016/j.biopha.2018.11.056

    Article  CAS  PubMed  Google Scholar 

  52. Li A, Tao Y, Kong D et al (2017) Infusion of umbilical cord mesenchymal stem cells alleviates symptoms of ankylosing spondylitis. Exp Ther Med 14:1538–1546. https://doi.org/10.3892/etm.2017.4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keyszer G, Christopeit M, Fick S et al (2011) Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum 63:2540–2542. https://doi.org/10.1002/art.30431

    Article  PubMed  Google Scholar 

  54. Zhang H, Liang J, Tang X et al (2017) Sustained benefit from combined plasmapheresis and allogeneic mesenchymal stem cells transplantation therapy in systemic sclerosis. Arthritis Res Ther 19:165. https://doi.org/10.1186/s13075-017-1373-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Del Papa N, Di Luca G, Sambataro D et al (2015) Regional implantation of autologous adipose tissue-derived cells induces a prompt healing of long-lasting indolent digital ulcers in patients with systemic sclerosis. Cell Transplant 24:2297–2305. https://doi.org/10.3727/096368914X685636

    Article  PubMed  Google Scholar 

  56. Granel B, Daumas A, Jouve E et al (2015) Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis 74:2175–2182. https://doi.org/10.1136/annrheumdis-2014-205681

    Article  CAS  PubMed  Google Scholar 

  57. Sun L, Wang D, Liang J et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 62:2467–2475. https://doi.org/10.1002/art.27548

    Article  CAS  PubMed  Google Scholar 

  58. Liang J, Zhang H, Hua B et al (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69:1423–1429. https://doi.org/10.1136/ard.2009.123463

    Article  PubMed  Google Scholar 

  59. Li X, Wang D, Liang J et al (2013) Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant 48:544–550. https://doi.org/10.1038/bmt.2012.184

    Article  CAS  PubMed  Google Scholar 

  60. Gu F, Wang D, Zhang H et al (2014) Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol 33:1611–1619. https://doi.org/10.1007/s10067-014-2754-4

    Article  PubMed  Google Scholar 

  61. Wang D, Li J, Zhang Y et al (2014) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16:R79. https://doi.org/10.1186/ar4520

    Article  PubMed  PubMed Central  Google Scholar 

  62. Xu J, Wang D, Liu D et al (2012) Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjogren syndrome. Blood 120:3142–3151. https://doi.org/10.1182/blood-2011-11-391144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pedrosa M, Gomes J, Laranjeira P et al (2019) Immunomodulatory effect of human bone marrow-derived mesenchymal stromal/stem cells on peripheral blood T cells from rheumatoid arthritis patients. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2958

    Article  PubMed  Google Scholar 

  64. Gonzalez-Rey E, Gonzalez MA, Varela N et al (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69:241–248. https://doi.org/10.1136/ard.2008.101881

    Article  CAS  PubMed  Google Scholar 

  65. Huang ZF, Lu SH, Zhu J et al (2013) Inhibitory effects of human umbilical cord-derived mesenchymal stem cells on proliferation of peripheral blood mononuclear cells from spondyloarthritis patients. Zhonghua Yi Xue Za Zhi 93:1499–1502

    CAS  PubMed  Google Scholar 

  66. Huang ZF, Zhu J, Lu SH et al (2013) Inhibitory effect of human umbilical cord-derived mesenchymal stem cells on interleukin-17 production in peripheral blood T cells from spondyloarthritis patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi 21:455–459. https://doi.org/10.7534/j.issn.1009-2137.2013.02.041

    Article  CAS  PubMed  Google Scholar 

  67. Wang P, Li Y, Huang L et al (2014) Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial. Cell Transplant 23:1293–1303. https://doi.org/10.3727/096368913X667727

    Article  PubMed  Google Scholar 

  68. Abdolmohammadi K, Pakdel FD, Aghaei H et al (2019) Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach. Biomed Pharmacother 109:1196–1205. https://doi.org/10.1016/j.biopha.2018.10.137

    Article  CAS  PubMed  Google Scholar 

  69. Berthelot JM, Le Goff B, Maugars Y (2019) Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis Res Ther 21:239. https://doi.org/10.1186/s13075-019-2014-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Layh-Schmitt G, Lu S, Navid F et al (2017) Generation and differentiation of induced pluripotent stem cells reveal ankylosing spondylitis risk gene expression in bone progenitors. Clin Rheumatol 36:143–154. https://doi.org/10.1007/s10067-016-3469-5

    Article  PubMed  Google Scholar 

  71. Del Papa N, Quirici N, Soligo D et al (2006) Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 54:2605–2615. https://doi.org/10.1002/art.22035

    Article  CAS  PubMed  Google Scholar 

  72. Rozier P, Maria A, Goulabchand R et al (2018) Mesenchymal stem cells in systemic sclerosis: allogenic or autologous approaches for therapeutic use? Front Immunol 9:2938. https://doi.org/10.3389/fimmu.2018.02938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Di Benedetto P, Panzera N, Cipriani P et al (2019) Mesenchymal stem cells of systemic sclerosis patients, derived from different sources, show a profibrotic microRNA profiling. Sci Rep 9:7144. https://doi.org/10.1038/s41598-019-43638-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cipriani P, Guiducci S, Miniati I et al (2007) Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis Rheum 56:1994–2004. https://doi.org/10.1002/art.22698

    Article  CAS  PubMed  Google Scholar 

  75. Fonteneau G, Bony C, Goulabchand R et al (2017) Serum-mediated oxidative stress from systemic sclerosis patients affects mesenchymal stem cell function. Front Immunol 8:988. https://doi.org/10.3389/fimmu.2017.00988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Larghero J, Farge D, Braccini A et al (2008) Phenotypical and functional characteristics of in vitro expanded bone marrow mesenchymal stem cells from patients with systemic sclerosis. Ann Rheum Dis 67:443–449. https://doi.org/10.1136/ard.2007.071233

    Article  CAS  PubMed  Google Scholar 

  77. Capelli C, Zaccara E, Cipriani P et al (2017) Phenotypical and functional characteristics of in vitro-expanded adipose-derived mesenchymal stromal cells from patients with systematic sclerosis. Cell Transplant 26:841–854. https://doi.org/10.3727/096368917X694822

    Article  PubMed  PubMed Central  Google Scholar 

  78. Griffin M, Ryan CM, Pathan O et al (2017) Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls: implications for regenerative medicine. Stem Cell Res Ther 8:23. https://doi.org/10.1186/s13287-016-0444-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gao L, Zhang Y, Hu B et al (2016) Phase II multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after HLA-haploidentical stem-cell transplantation. J Clin Oncol 34:2843–2850. https://doi.org/10.1200/JCO.2015.65.3642

    Article  CAS  PubMed  Google Scholar 

  80. Ferreli C, Gasparini G, Parodi A et al (2017) Cutaneous manifestations of scleroderma and scleroderma-like disorders: a comprehensive review. Clin Rev Allergy Immunol 53:306–336. https://doi.org/10.1007/s12016-017-8625-4

    Article  CAS  PubMed  Google Scholar 

  81. Wehbe T, Abi Saab M, Abi Chahine N et al (2016) Mesenchymal stem cell therapy for refractory scleroderma: a report of 2 cases. Stem Cell Investig 3:48. https://doi.org/10.21037/sci.2016.09.03

    Article  PubMed  PubMed Central  Google Scholar 

  82. Magalon J, Velier M, Simoncini S et al (2019) Molecular profile and proangiogenic activity of the adipose-derived stromal vascular fraction used as an autologous innovative medicinal product in patients with systemic sclerosis. Ann Rheum Dis 78:391–398. https://doi.org/10.1136/annrheumdis-2018-214218

    Article  CAS  PubMed  Google Scholar 

  83. Guillaume-Jugnot P, Daumas A, Magalon J et al (2016) Autologous adipose-derived stromal vascular fraction in patients with systemic sclerosis: 12-month follow-up. Baillieres Clin Rheumatol 55:301–306. https://doi.org/10.1093/rheumatology/kev323

    Article  Google Scholar 

  84. Li X, Liu L, Meng D et al (2012) Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev 21:2387–2394. https://doi.org/10.1089/scd.2011.0447

    Article  CAS  PubMed  Google Scholar 

  85. Sun LY, Zhang HY, Feng XB et al (2007) Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 16:121–128. https://doi.org/10.1177/0961203306075793

    Article  CAS  PubMed  Google Scholar 

  86. Carrion F, Nova E, Ruiz C et al (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19:317–322. https://doi.org/10.1177/0961203309348983

    Article  CAS  PubMed  Google Scholar 

  87. Zhou K, Zhang H, Jin O et al (2008) Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol 5:417–424. https://doi.org/10.1038/cmi.2008.52

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sun L, Akiyama K, Zhang H et al (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27:1421–1432. https://doi.org/10.1002/stem.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liang J, Gu F, Wang H et al (2010) Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol 6:486–489. https://doi.org/10.1038/nrrheum.2010.80

    Article  PubMed  Google Scholar 

  90. Shi D, Wang D, Li X et al (2012) Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clin Rheumatol 31:841–846. https://doi.org/10.1007/s10067-012-1943-2

    Article  PubMed  Google Scholar 

  91. Wang D, Niu L, Feng X et al (2017) Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clin Exp Med 17:333–340. https://doi.org/10.1007/s10238-016-0427-0

    Article  CAS  PubMed  Google Scholar 

  92. Wang SQ, Wang YX, Hua H (2017) Characteristics of labial gland mesenchymal stem cells of healthy individuals and patients with Sjogren’s syndrome: a preliminary study. Stem Cells Dev 26:1171–1185. https://doi.org/10.1089/scd.2017.0045

    Article  CAS  PubMed  Google Scholar 

  93. Liu Y, Li C, Wang S et al (2019) Human umbilical cord mesenchymal stem cells confer potent immunosuppressive effects in Sjogren’s syndrome by inducing regulatory T cells. Mod Rheumatol 20:1–25. https://doi.org/10.1080/14397595.2019.1707996

    Article  CAS  Google Scholar 

  94. Gregorini M, Maccario R, Avanzini MA et al (2013) Antineutrophil cytoplasmic antibody-associated renal vasculitis treated with autologous mesenchymal stromal cells: evaluation of the contribution of immune-mediated mechanisms. Mayo Clin Proc 88:1174–1179. https://doi.org/10.1016/j.mayocp.2013.06.021

    Article  PubMed  Google Scholar 

  95. Davatchi F, Nikbin B, Shams H et al (2013) Mesenchymal stem cell therapy unable to rescue the vision from advanced Behcet’s disease retinal vasculitis: report of three patients. Int J Rheum Dis 16:139–147. https://doi.org/10.1111/1756-185X.12068

    Article  CAS  PubMed  Google Scholar 

  96. Naji A, Eitoku M, Favier B et al (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76:3323–3348. https://doi.org/10.1007/s00018-019-03125-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Keyßer.

Ethics declarations

Interessenkonflikt

G. Keyßer gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

T. Alexander, Berlin

G.-R. Burmester, Berlin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyßer, G. Mesenchymale Stammzelltherapie bei Autoimmunerkrankungen. Z Rheumatol 79, 437–445 (2020). https://doi.org/10.1007/s00393-020-00790-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-020-00790-7

Schlüsselwörter

Keywords

Navigation