Skip to main content

Advertisement

Log in

Role of pregnancy hormones and hormonal interaction on the maternal cardiovascular system: a literature review

  • Review
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Hormones have a vital duty in the conservation of physiological cardiovascular function during pregnancy. Alterations in oestrogen, progesterone and prolactin levels are associated with changes in the cardiovascular system to support the growing foetus and counteract pregnancy stresses. Pregnancy hormones are, however, also linked to numerous pathophysiological outcomes on the cardiovascular system. The expression and effects of the three main pregnancy hormones (oestrogen, prolactin and progesterone) vary depending on the gestation period. However, the reaction of a target cell also depends on the abundance of hormone receptors and impacts put forth by other hormones. Hormonal interaction may be synergistic, antagonistic or permissive. It is crucial to explore the cross talk of pregnancy hormones during gestation, as this may have a greater impact on the overall changes to the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chung E, Leinwand LA (2014) Pregnancy as a cardiac stress model. Cardiovasc Res 101:561–570. https://doi.org/10.1093/cvr/cvu013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soma-pillay P, Nelson-piercy C, Tolppanen H, Mebazaa A (2016) Physiological changes in pregnancy. Cardiovasc J AFRICA 27:89–94. https://doi.org/10.5830/CVJA-2016-021

    Article  Google Scholar 

  3. Sanghavi M, Rutherford JD (2014) Cardiovascular physiology of pregnancy. Circ AHA 10:1003–1008. https://doi.org/10.1161/CIRCULATIONAHA.114.009029

    Article  Google Scholar 

  4. Osol G, Ko NL, Mandalà M (2017) Altered endothelial nitric oxide signaling as a paradigm for maternal vascular maladaptation in preeclampsia. Curr Hypertens Rep 19:1–12. https://doi.org/10.1007/s11906-017-0774-6

    Article  Google Scholar 

  5. Dos Santos RL, Da Silva FB, Ribeiro RF, Stefanon I (2014) Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig 18:89–103. https://doi.org/10.1515/hmbci-2013-0048

    Article  CAS  PubMed  Google Scholar 

  6. Carlin A (2008) Physiological changes of pregnancy and monitoring. Res Clin Obstet Gynaecol 22:801–823. https://doi.org/10.1016/j.bpobgyn.2008.06.005

    Article  Google Scholar 

  7. Melchiorre K, Sharma R, Thilaganathan B (2012) Cardiac structure and function in normal pregnancy. Curr Opin Obstet Gynecol 24:413–421. https://doi.org/10.1097/GCO.0b013e328359826f

    Article  PubMed  Google Scholar 

  8. Meah VL, Cockcroft JR, Backx K et al (2016) Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart 102:518–526. https://doi.org/10.1136/heartjnl-2015-308476

    Article  CAS  PubMed  Google Scholar 

  9. Halla ME, Eric M, George JPG (2011) The heart during pregnancy. Rev Esp Cardiol 64:1045–1050. https://doi.org/10.1016/j.recesp.2011.07.009.The

    Article  Google Scholar 

  10. Liu LX, Arany Z (2014) Maternal cardiac metabolism in pregnancy. Cardiovasc Res 101:545–553. https://doi.org/10.1093/cvr/cvu009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanghavi M, Rutherford JD (2014) Cardiovascular physiology of pregnancy. Circulation 130:1003–1008. https://doi.org/10.1161/CIRCULATIONAHA.114.009029

    Article  PubMed  Google Scholar 

  12. Melchiorre K, Sharma R, Khalil A, Thilaganathan B (2016) Maternal cardiovascular function in normal pregnancy: evidence of maladaptation to chronic volume overload. Hypertension 67:754–762. https://doi.org/10.1161/HYPERTENSIONAHA.115.06667

    Article  CAS  PubMed  Google Scholar 

  13. Gilson GJ, Samaan S, Crawford MH et al (1997) Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: a longitudinal study. Obstet Gynecol 89:957–962. https://doi.org/10.1016/S0029-7844(97)85765-1

    Article  CAS  PubMed  Google Scholar 

  14. Estensen ME, Beitnes JO, Grindheim G et al (2013) Altered maternal left ventricular contractility and function during normal pregnancy. Ultrasound Obstet Gynecol 41:659–666. https://doi.org/10.1002/uog.12296

    Article  CAS  PubMed  Google Scholar 

  15. Rebelo F, Farias DR, Mendes RH, Schlüsselal MM, Kac G (2015) Blood pressure variation throughout pregnancy according to early gestational BMI: A Brazilian Cohort. Arq Bras Cardiol 104:284–291. https://doi.org/10.5935/abc.20150007

    Article  PubMed  PubMed Central  Google Scholar 

  16. National High Blood Pressure Education Program Working Group (1990) Report on high blood pressure in pregnancy. Am J Obstet Gynecol 183:1691–1712. https://doi.org/10.1067/mob.2000.107928

    Article  Google Scholar 

  17. Gifford R, August P, Cunningham G et al (2000) National High Blood Pressure Education Working Group report on high blood pressure in pregnancy. Natl Institutes Heal NIH Publ no 00-3029, pp 3–5

  18. Geva T, Mauer MB, Striker L et al (1997) Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J 133:53–59. https://doi.org/10.1016/S0002-8703(97)70247-3

    Article  CAS  PubMed  Google Scholar 

  19. Mesa A, Jessurun C, Hernandez A et al (1999) Left ventricular diastolic function in normal human pregnancy. Circulation 1:511–517

    Article  Google Scholar 

  20. Hunter S, Robson SC (1992) Adaptation of the maternal heart in pregnancy. Heart 68:540–543. https://doi.org/10.1136/hrt.68.12.540

    Article  CAS  Google Scholar 

  21. Sampaolesi M, Van Calsteren K (2017) Physiological and pathological gestational cardiac hypertrophy: what can we learn from rodents? Cardiovasc Res 113:1533–1535. https://doi.org/10.1093/cvr/cvx192

    Article  CAS  PubMed  Google Scholar 

  22. Sliwa K, Böhm M (2014) Incidence and prevalence of pregnancy-related heart disease. Cardiovasc Res 101:554–560. https://doi.org/10.1093/cvr/cvu012

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Umar S, Amjedi M et al (2012) New frontiers in heart hypertrophy during pregnancy. Am J Cardiovasc Dis 2:192–207

    PubMed  PubMed Central  Google Scholar 

  24. Gongora MC, Wenger NK (2015) Cardiovascular complications of pregnancy. Int J Mol Sci 16:23905–23928. https://doi.org/10.3390/ijms161023905

    Article  PubMed  PubMed Central  Google Scholar 

  25. Siu SC, Sermer M, Colman JM et al (2001) Clinical investigation and reports prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation 104:515–521. https://doi.org/10.1161/hc3001.093437

    Article  CAS  Google Scholar 

  26. Elkayam U (2018) How to predict pregnancy risk in an individual woman with heart disease. J Am Coll Cardiol 71:2431–2433. https://doi.org/10.1016/j.jacc.2018.03.492

    Article  PubMed  Google Scholar 

  27. Cornelia R. Graves SFD (2018) Cardiovascular complications in pregnancy. Circulation 1213–1215. https://doi.org/10.1016/j.ajog.2015.05.008.3

  28. Iemitsu M, Miyauchi T, Maeda S et al (2001) Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am J Physiol Integr Comp Physiol 281:R2029–R2036. https://doi.org/10.1152/ajpregu.2001.281.6.R2029

    Article  CAS  Google Scholar 

  29. Tsang W, Lang RM (2013) Peripartum cardiomyopathy: Etiology, clinical manifestations, and diagnosis. Wolters kluwer. https://www.uptodate.com/contents/peripartum-cardiomyopathy-etiology-clinical-manifestations-and-diagnosis/print. Accessed 9 Feb 2019

  30. Soma-Pillay P, Seabe J, Sliwa K (2016) The importance of cardiovascular pathology contributing to maternal death: confidential enquiry into maternal deaths in South Africa, 2011–2013. Cardiovasc J Afr 27:60–65. https://doi.org/10.5830/CVJA-2016-008

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moodley J, Fawcus S, Pattinson R (2015) Saving mothers 2011–2013: sixth report on confidential enquiries into maternal deaths in South Africa Short report

  32. Rohilla A, Kumar P, Rohilla S, Kushnoor A (2012) Cardiac hypertrophy: a review on pathogenesis and treatment. Int J Pharm Sci Drug Res 4:164–167

    CAS  Google Scholar 

  33. Yeves AM, Villa-Abrille MC, Pérez NG et al (2014) Physiological cardiac hypertrophy: critical role of AKT in the prevention of NHE-1 hyperactivity. J Mol Cell Cardiol 76:186–195. https://doi.org/10.1016/j.yjmcc.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  34. Kintiraki E, Papakatsika S, Kotronis G et al (2015) Pregnancy-induced hypertension. Horm 14:211–223. https://doi.org/10.14310/horm.2002.1582

    Article  Google Scholar 

  35. Al-Nasiry S, Ghossein-Doha C, Polman SEJ et al (2015) Metabolic syndrome after pregnancies complicated by pre-eclampsia or small-for-gestational-age: a retrospective cohort. BJOG An Int J Obstet Gynaecol 122:1818–1823. https://doi.org/10.1111/1471-0528.13117

    Article  CAS  Google Scholar 

  36. Blauwet L, Sliwa K (2011) Peripartum cardiomyopathy. Obstet Med 4:44–52. https://doi.org/10.1258/om.2010.100054

    Article  PubMed  PubMed Central  Google Scholar 

  37. Azibani F, Sliwa K (2018) Peripartum cardiomyopathy: an update. Curr Heart Fail Rep 15(5):297–306. https://doi.org/10.1007/s11897-018-0404-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hilfiker-Kleiner D, Sliwa K (2014) Pathophysiology and epidemiology of peripartum cardiomyopathy. Nat Rev Cardiol 11:364–370. https://doi.org/10.1038/nrcardio.2014.37

    Article  CAS  PubMed  Google Scholar 

  39. Patten IS, Rana S, Shahul S et al (2012) Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485:333–338. https://doi.org/10.1038/nature11040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hilfiker-Kleiner D, Kaminski K, Podewski E et al (2007) A cathepsin D-Cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128:589–600. https://doi.org/10.1016/j.cell.2006.12.036

    Article  CAS  PubMed  Google Scholar 

  41. Patten IS, Rana S, Shahul S et al (2012) Sup-cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature 485:333–338. https://doi.org/10.1038/nature11040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Halkein J, Tabruyn SP, Ricke-Hoch M et al (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 123:2143–2154. https://doi.org/10.1172/JCI64365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stergiopoulos K, Lima FV (2018) Peripartum cardiomyopathy-diagnosis, management, and long term implications. Trends Cardiovasc Med 0:1–10. https://doi.org/10.1016/j.tcm.2018.07.012

    Article  Google Scholar 

  44. Sliwa K, Hilfiker-Kleiner D, Petrie MC et al (2010) Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail 12:767–778. https://doi.org/10.1093/eurjhf/hfq120

    Article  PubMed  Google Scholar 

  45. Haghikia A, Schwab J, Vogel J et al (2018) Bromocriptine treatment in patients with peripartum cardiomyopathy and right ventricular dysfunction. Clin Res Cardiol. https://doi.org/10.1007/s00392-018-1355-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arany Z (2018) Understanding peripartum cardiomyopathy. Annu Rev Med 69:1.1–1.12. https://doi.org/10.1146/annurev-med-041316

    Article  Google Scholar 

  47. Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C et al (2018) 2018 ESC Guidelines on the management of cardiovascular diseases during pregnancy. Eur Heart J 32:3147–3197. https://doi.org/10.1093/eurheartj/ehr218

    Article  Google Scholar 

  48. Bauersachs J, Arrigo M, Hilfiker-Kleiner D et al (2016) Current management of patients with severe acute peripartum cardiomyopathy: practical guidance from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur J Heart Fail 18:1096–1105. https://doi.org/10.1002/ejhf.586

    Article  PubMed  Google Scholar 

  49. Kido K, Guglin M (2018) Anticoagulation therapy in specific cardiomyopathies: isolated left ventricular non-compaction and peripartum cardiomyopathy. J Cardiovasc Pharmacol Therap. https://doi.org/10.1177/1074248418783745

    Article  Google Scholar 

  50. Hoeltzenbein M, Beck E, Meixner K et al (2015) Pregnancy outcome after exposure to the novel oral anticoagulant rivaroxaban in women at suspected risk for thromboembolic events: a case series from the German Embryotox Pharmacovigilance Centre. Clin Res Cardiol. https://doi.org/10.1007/s00392-015-0893-5

    Article  PubMed  Google Scholar 

  51. Duncker D, Westenfeld R, Konrad T et al (2017) Risk for life-threatening arrhythmia in newly diagnosed peripartum cardiomyopathy with low ejection fraction: a German multi-centre analysis. Clin Res Cardiol. https://doi.org/10.1007/s00392-017-1090-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brewster S, Zinman B, Retnakaran R, Floras JS (2013) Cardiometabolic consequences of gestational dysglycemia. J Am Coll Cardiol 62:677–684. https://doi.org/10.1016/j.jacc.2013.01.080

    Article  CAS  PubMed  Google Scholar 

  53. De Rosa S, Arcidiacono B, Chiefari E et al (2018) Type 2 diabetes mellitus and cardiovascular disease: Genetic and epigenetic links. Front Endocrinol (Lausanne) 9:1–13. https://doi.org/10.3389/fendo.2018.00002

    Article  Google Scholar 

  54. Lee CH, Lee S, Park S (2018) Diabetes and subclinical coronary atherosclerosis. Diabetes Metab J 42:355–363

    Article  Google Scholar 

  55. Garcia M, Mulvagh SL, Merz CNB et al (2016) Cardiovascular disease in women: clinical perspectives. Circ Res 118:1273–1293. https://doi.org/10.1161/CIRCRESAHA.116.307547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kew S, Ye C, Hanley AJ et al (2014) Cardiometabolic implications of postpartum weight changes in the first year after delivery. Diabetes Care 37:1998–2006. https://doi.org/10.2337/dc14-0087

    Article  CAS  PubMed  Google Scholar 

  57. Taylor R, Burney SH RO (2015) Endocrinology of pregnancy. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Basic and clinical endocrinology. Endotext [Internet]. MDText.com, South Dartmouth, pp 1–67

    Google Scholar 

  58. Chen JZ, Sheehan PM, Brennecke SP, Keogh RJ (2012) Molecular and cellular endocrinology vessel remodelling, pregnancy hormones and extravillous trophoblast function. Mol Cell Endocrinol 349:138–144. https://doi.org/10.1016/j.mce.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  59. Gonza´lez-Mariscal G, Melo AI (2017) Bidirectional effects of mother-young contact on the maternal and neonatal brains parental behavior. Adv Exp Med Biol 1015:97–116. https://doi.org/10.1007/978-3-319-62817-2_6

    Article  Google Scholar 

  60. Magon N, Kumar P (2012) Hormones in pregnancy. Niger Med J 53:179. https://doi.org/10.4103/0300-1652.107549

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grattan DR (2001) The actions of prolactin in the brain during pregnancy and lactation. Prog Brain Res 133:153–171. https://doi.org/10.1016/S0079-6123(01)33012-1

    Article  CAS  PubMed  Google Scholar 

  62. Gale T (2006) Gale encyclopaedia of nursing and allied health. https://www.encyclopedia.com/medicine/encyclopedias-almanacs-transcripts-and-maps/lactation-0. Accessed 9 Feb 2019

  63. Camacho-Arroyo I, González-Arenas A, Jiménez-Arellano C et al (2018) Sex hormone levels and expression of their receptors in lactating and lactating pregnant rats. J Steroid Biochem Mol Biol 178:213–220. https://doi.org/10.1016/j.jsbmb.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  64. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230. https://doi.org/10.1016/S0960-0760(03)00360-1

    Article  CAS  PubMed  Google Scholar 

  65. Cui J, Shen Y, Li R (2011) Estrogen synthesis and signaling pathways during ageing: from periphery to brain. Trends Mol Med 19:976–997. https://doi.org/10.1016/j.molmed.2012.12.007.Estrogen

    Article  Google Scholar 

  66. Gruber CJ, Tschugguel W, Schneeberger C, Huber J (2002) Production and action of estrogens. N Engl J Med 346:340–352. https://doi.org/10.1016/S0960-0760(01)00184-4

    Article  CAS  PubMed  Google Scholar 

  67. Boese AC, Kim SC, Yin K et al (2017) Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Hear Circ Physiol 70112:524–545. https://doi.org/10.1152/ajpheart.00217.2016

    Article  Google Scholar 

  68. Kim KH, Young BD, Bender JR (2014) Endothelial estrogen receptor isoforms and cardiovascular disease. Mol Cell Endocrinol 389:65–70. https://doi.org/10.1016/j.mce.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Monteiro R, Teixeira D, Calhau C (2014) Estrogen signaling in metabolic inflammation. Mediators Inflamm. https://doi.org/10.1155/2014/615917

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liou C-M, Yang A-L, Kuo C-H et al (2010) Effects of 17 Beta-estradiol on cardiac apoptosis in overiectomized rats. Cell Biochem Funct 28:521–528. https://doi.org/10.1016/j.numecd.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  71. Klinge CM (2009) Estrogenic control of mitochondrial function and biogenesis. Cell 105:1342–1351. https://doi.org/10.1002/jcb.21936.Estrogenic

    Article  Google Scholar 

  72. Murphy E (2011) Estrogen signaling and cardiovascular disease. Circ Res 109:687–696. https://doi.org/10.1161/CIRCRESAHA.110.236687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iorga A, Cunningham CM, Moazeni S et al (2017) The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 8:33. https://doi.org/10.1186/s13293-017-0152-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Arias-Loza PA, Muehlfelder M, Pelzer T (2013) Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch Eur J Physiol 465:739–746. https://doi.org/10.1007/s00424-013-1247-7

    Article  CAS  Google Scholar 

  75. Scott PA, Tremblay A, Brochu M, St-Louis J (2007) Vasorelaxant action of 17-estradiol in rat uterine arteries: role of nitric oxide synthases and estrogen receptors. Am J Physiol Hear Circ Physiol 293:H3713–H3719

    Article  CAS  Google Scholar 

  76. Das A, Mantena SR, Kannan A et al (2009) De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Proc Natl Acad Sci USA 106:12542–12547. https://doi.org/10.1073/pnas.0901647106

    Article  PubMed  Google Scholar 

  77. Chakrabarti S, Morton JS, Davidge ST (2014) Mechanisms of estrogen effects on the endothelium: an overview. Can J Cardiol 30:705–712. https://doi.org/10.1016/j.cjca.2013.08.006

    Article  PubMed  Google Scholar 

  78. Lee C-H, Su S-C, Chiang C-F et al (2017) Estrogen modulates vascular smooth muscle cell function through downregulation of SIRT1. Oncotarget 8:110039–110051. https://doi.org/10.18632/oncotarget.22546

    Article  PubMed  PubMed Central  Google Scholar 

  79. Favre J, Gao J, Henry J-P et al (2010) Endothelial estrogen receptor {alpha} plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/reperfusion. Arterioscler Thromb Vasc Biol 30:2562–2567. https://doi.org/10.1161/ATVBAHA.110.213637

    Article  CAS  PubMed  Google Scholar 

  80. Castardo-De-Paula JC, De Campos BH, Amorim EDT et al (2017) Cardiovascular risk and the effect of nitric oxide synthase inhibition in female rats: the role of estrogen. Exp Gerontol 97:38–48. https://doi.org/10.1016/j.exger.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  81. Strehlow K, Rotter S, Wassmann S et al (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93:170–177. https://doi.org/10.1161/01.RES.0000082334.17947.11

    Article  CAS  PubMed  Google Scholar 

  82. Reslan M, Khalil OAR (2012) Vascular effects of estrogenic menopausal hormone therapy. Rev Recent Clin Trials 7:47–70. https://doi.org/10.2174/157488712799363253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuan P, Wu WH, Gao L et al (2013) Oestradiol ameliorates monocrotaline pulmonary hypertension via NO, prostacyclin and endothelin-1 pathways. Eur Respir J 41:1116–1125. https://doi.org/10.1183/09031936.00044112

    Article  CAS  PubMed  Google Scholar 

  84. Eickels M, Van Grohé C, Cleutjens JPM et al (2001) 17 B-estradiol attenuates the development of pressure overload hypertrophy. Circulation 104:1419–1423

    Article  Google Scholar 

  85. Bueno OF, De Windt LJ, Lim HW et al (2001) The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 88:88–96. https://doi.org/10.1161/01.RES.88.1.88

    Article  CAS  PubMed  Google Scholar 

  86. Lam CSP, Cheng S, Choong K et al (2011) Influence of sex and hormone status on circulating natriuretic peptides. J Am Coll Cardiol 58:618–626. https://doi.org/10.1016/j.jacc.2011.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Donaldson C, Eder S, Baker C et al (2009) Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res 104:265–275. https://doi.org/10.1016/j.cogdev.2010.08.003.Personal

    Article  CAS  PubMed  Google Scholar 

  88. Gürgen D, Kusch A, Klewitz R et al (2013) Sex-specific mTOR signaling determines sexual dimorphism in myocardial adaptation in normotensive DOCA-salt model. Hypertension 61:730–736. https://doi.org/10.1161/HYPERTENSIONAHA.111.00276

    Article  CAS  PubMed  Google Scholar 

  89. Pedram A, Razandi M, Narayanan R et al (2013) Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell 24:3805–3818. https://doi.org/10.1091/mbc.E13-08-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kilić A, Javadov S, Karmazyn M (2009) Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 46:360–369. https://doi.org/10.1016/j.yjmcc.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  91. Lin K-H, Kuo W-W, Shibu M et al (2017) E2/ER β enhances calcineurin protein degradation and PI3K/Akt/MDM2 signal transduction to inhibit ISO-induced myocardial cell apoptosis. Int J Mol Sci 18:892. https://doi.org/10.3390/ijms18040892

    Article  CAS  PubMed Central  Google Scholar 

  92. Gardner JD, Murray DB, Voloshenyuk TG et al (2010) Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts. AJP Hear Circ Physiol 298:H497–H504. https://doi.org/10.1152/ajpheart.00336.2009

    Article  CAS  Google Scholar 

  93. Satoh M, Matter CM, Ogita H et al (2007) Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 115:3197–3204. https://doi.org/10.1161/CIRCULATIONAHA.106.657981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fliegner D, Schubert C, Penkalla A et al (2010) Female sex and estrogen receptor- attenuate cardiac remodeling and apoptosis in pressure overload. AJP Regul Integr Comp Physiol 298:R1597–R1606. https://doi.org/10.1152/ajpregu.00825.2009

    Article  CAS  Google Scholar 

  95. Luo T, Kim JK (2016) The role of estrogen and estrogen receptors on cardiomyocytes: an overview. Can J Cardiol 32:1017–1025. https://doi.org/10.1016/j.cjca.2015.10.021

    Article  PubMed  Google Scholar 

  96. Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-κB. Trends Endocrinol Metab 16:46–52. https://doi.org/10.1016/j.tem.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  97. Patten RD, Pourati I, Aronovitz MJ et al (2004) 17β-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 95:692–699. https://doi.org/10.1161/01.RES.0000144126.57786.89

    Article  CAS  PubMed  Google Scholar 

  98. Satoh M, Matter CM, Ogita H, Takeshita K, Wang C-Y, Dorn GW, Liao JK (2009) Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 6:247–253. https://doi.org/10.1111/j.1743-6109.2008.01122.x.Endothelial

    Article  Google Scholar 

  99. Liu H, Pedram A, Kim JK (2011) Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β. Cardiovasc Res 89:119–128. https://doi.org/10.1093/cvr/cvq265

    Article  CAS  PubMed  Google Scholar 

  100. Pare G, Krust A, Karas RH et al (2002) Estrogen receptor-α mediates the protective effects of estrogen against vascular injury. Circ Res 90:1087–1092. https://doi.org/10.1161/01.RES.0000021114.92282.FA

    Article  CAS  PubMed  Google Scholar 

  101. Fortini F, Dalla Sega FV, Caliceti C et al (2017) Estrogen receptor β-dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis. J Biol Chem 292:18178–18191. https://doi.org/10.1074/jbc.M117.790121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Clegg D, Hevener AL, Moreau KL et al (2017) Sex hormones and cardiometabolic health: role of estrogen and estrogen receptors. Metabolism 158:1095–1105. https://doi.org/10.1210/en.2016-1677

    Article  Google Scholar 

  103. Grohé C, Kahlert S, Löbbert K et al (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107–112. https://doi.org/10.1016/S0014-5793(97)01179-4

    Article  PubMed  Google Scholar 

  104. Elwood V, Jensen. Herbert I, Jacobson. Alicia A, Walf, Cheryl AF (2010) Estrogen action: a historic perspective on the implications of considering alternative approaches. Physiol Behav 99:151–162. https://doi.org/10.1016/j.physbeh.2009.08.013.Estrogen

    Article  Google Scholar 

  105. Kim JK, Levin ER (2006) Estrogen signaling in the cardiovascular system. Nucl Recept Signal 4:1–5. https://doi.org/10.1621/nrs.04013

    Article  CAS  Google Scholar 

  106. Iwabuchi E, Miki Y, Ono K et al (2017) In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA). J Steroid Biochem Mol Biol 165:159–169. https://doi.org/10.1016/j.jsbmb.2016.05.022

    Article  CAS  PubMed  Google Scholar 

  107. Foryst-Ludwig A, Kintscher U (2010) Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol 122:74–81. https://doi.org/10.1016/j.jsbmb.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  108. Ravankar CM, Cimino DF, Sklar LA et al (2005) A transmembrane intercellulare estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    Article  Google Scholar 

  109. Filardo E, Quinn J, Pang Y et al (2007) Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology 148:3236–3245. https://doi.org/10.1210/en.2006-1605

    Article  CAS  PubMed  Google Scholar 

  110. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–632. https://doi.org/10.1210/en.2004-1064

    Article  CAS  Google Scholar 

  111. Meyer MR, Prossnitz ER, Barton M (2011) The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vascul Pharmacol 55:17–25. https://doi.org/10.1016/j.vph.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takada Y, Kato C, Kondo S et al (1997) Cloning of cDNAs encoding G protein-coupled receptor expressed in human endothelial cells exposed to fluid shear stress. Biochem Biophys Res Commun 240:737–741. https://doi.org/10.1006/bbrc.1997.7734

    Article  CAS  PubMed  Google Scholar 

  113. Mizukami Y (2010) In vivo functions of GPR30/GPER-1, a membrane receptor for estrogen: from discovery to functions in vivo. Endocr J 57:101–107. https://doi.org/10.1507/endocrj.K09E-332

    Article  CAS  PubMed  Google Scholar 

  114. Tomac J, Cekinovć D, Arapović J (2011) Biology of the corpus luteum. Period Biol 113:43–49

    Google Scholar 

  115. Tuckey RC (2005) Progesterone synthesis by the human placenta. Placenta 26:273–281. https://doi.org/10.1016/j.placenta.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  116. Kuebler JF, Jarrar D, Bland KI et al (2003) Progesterone administration after trauma and hemorrhagic shock improves cardiovascular responses. Crit Care Med 31:1786–1793. https://doi.org/10.1097/01.CCM.0000063441.41446.23

    Article  CAS  PubMed  Google Scholar 

  117. Pecins-Thompson M, Maureen K-W (1997) Effects of progesterone on blood pressure, plasma volume, and responses to hypotension. Am Physiol Soc 1:377–385

    Google Scholar 

  118. Morrissy S, Xu B, Aguilar D et al (2010) Inhibition of apoptosis by progesterone in cardiomyocytes. Aging Cell 9:799–809. https://doi.org/10.1111/j.1474-9726.2010.00619.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ramírez-Rosas MB, Cobos-Puc LE, Sánchez-López A et al (2014) Pharmacological characterization of the mechanisms involved in the vasorelaxation induced by progesterone and 17β-estradiol on isolated canine basilar and internal carotid. Steroids 89:33–40. https://doi.org/10.1016/j.steroids.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  120. Miller VM (2010) Hormonal modulation of endothelial NO production Sue. Pflugers Arch 459:841–851. https://doi.org/10.1007/s00424-010-0797-1.Hormonal

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nelson SH, Steinsland OS, Wang Y et al (2000) Increased nitric oxide synthase activity and expression in the human uterine artery during pregnancy. Circ Res 87:406–411. https://doi.org/10.1161/01.RES.87.5.406

    Article  CAS  PubMed  Google Scholar 

  122. Amaral L, Kiprono L, Cornelius D et al (2014) Progesterone supplementation attenuates hypertension and the autoantibody to the angiotensin II type I receptor in response to elevated interleukin-6 during pregnancy. Am J Obs Gynecol 211:22–29. https://doi.org/10.1016/j.jmb.2008.10.054.The

    Article  Google Scholar 

  123. Arroyo JA, Anthony RV, Parker TA, Galan HL (2010) ENOS, NO, and the activation of ERK and AKT signaling at mid-gestation and near-term in an ovine model of intrauterine growth restriction. Syst Biol Reprod Med 56:62–73. https://doi.org/10.3109/19396360903469307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Barbagallo M, Dominguez LJ, Licata G et al (2001) Vascular effects of progesterone: role of cellular calcium regulation. Hypertension 37:142–147. https://doi.org/10.1161/01.HYP.37.1.142

    Article  CAS  PubMed  Google Scholar 

  125. Chen QM, Alexander D, Sun H et al (2005) Corticosteroids inhibit cell death induced by doxorubicin in cardiomyocytes: induction of antiapoptosis, antioxidant, and detoxification genes. Mol Pharmacol 67:1861–1873. https://doi.org/10.1124/mol.104.003814

    Article  CAS  PubMed  Google Scholar 

  126. Feridooni HA, MacDonald JK, Ghimire A et al (2017) Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart. Am J Physiol Hear Circ Physiol 312:H46–H59. https://doi.org/10.1152/ajpheart.00073.2016

    Article  Google Scholar 

  127. Nilsson SE, Fransson E, Brismar K (2009) Relationship between serum progesterone concentrations and cardiovascular disease, diabetes, and mortality in elderly Swedish men and women: an 8-year prospective study. Gend Med 6:433–443. https://doi.org/10.1016/j.genm.2009.09.011

    Article  PubMed  Google Scholar 

  128. Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97. https://doi.org/10.1152/ajpcell.00287.2006

    Article  CAS  PubMed  Google Scholar 

  129. Yang X, Zhang W, Chen Y et al (2016) Activation of peroxisome proliferator-activated receptor γ (PPARγ) and CD36 protein expression: the dual pathophysiological roles of progesterone. J Biol Chem 291:15108–15118. https://doi.org/10.1074/jbc.M116.726737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang G, Sau C, Lai W et al (2015) Sex hormonal regulation of cardiac ion channels in drug- induced QT syndromes. Pharmacol Ther 344:1173–1178. https://doi.org/10.1126/science.1249098.Sleep

    Article  Google Scholar 

  131. Taraborrelli S (2015) Physiology, production and action of progesterone. Physiol Prod action progesterone 94:8–16. https://doi.org/10.1111/aogs.12771

    Article  CAS  Google Scholar 

  132. Gellersen B, Fernandes MS, Brosens JJ (2009) Non-genomic progesterone actions in female reproduction. Hum Reprod Update 15:119–138. https://doi.org/10.1093/humupd/dmn044

    Article  CAS  PubMed  Google Scholar 

  133. Soyal S, Ismail PM, Li J et al (2002) Progesterone’s role in mammary gland development and tumorigenesis as disclosed by experimental mouse genetics. Breast Cancer Res 4:191–196. https://doi.org/10.1186/bcr451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Furukawa T, Kurokawa J (2007) Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias. Pharmacol Ther 115:106–115. https://doi.org/10.1016/j.pharmthera.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  135. Welter BH, Hansen EL, Saner KJ et al (2003) Membrane-bound progesterone receptor expression in human aortic endothelial cells. J Histochem Cytochem 51:1049–1055. https://doi.org/10.1177/002215540305100808

    Article  CAS  PubMed  Google Scholar 

  136. Thomas P, Pang Y (2013) Protective actions of progesterone in the cardiovascular system: Potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids 78:583–588. https://doi.org/10.1016/j.steroids.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  137. Furukawa T, Kurokawa J (2008) Non-genomic regulation of cardiac ion channels by sex hormones. Cardiovasc Hematol Disord Targets 8:245–251. https://doi.org/10.2174/187152908786786160

    Article  CAS  Google Scholar 

  138. Corbacho AM, Martínez de la Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173:219–238. https://doi.org/10.1677/joe.0.1730219

    Article  CAS  PubMed  Google Scholar 

  139. Guclu M, Cander S, Kiyici S et al (2015) Serum macroprolactin levels in pregnancy and association with thyroid autoimmunity. BMC Endocr Disord. https://doi.org/10.1186/s12902-015-0025-2

    Article  PubMed  PubMed Central  Google Scholar 

  140. Pansini F, Bergamini CM, Malfaccini M et al (1984) Multiple molecular forms of prolactin during pregnancy in women. J Endocrinol 106:81–85

    Article  Google Scholar 

  141. Kanyicska LA, Lerant A, Freeman ME, Marc E (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    Article  Google Scholar 

  142. Ntusi NBA, Badri M, Gumedze F et al (2015) Pregnancy-associated heart failure: a comparison of clinical presentation and outcome between hypertensive heart failure of pregnancy and idiopathic peripartum cardiomyopathy. PLoS One 10:1–13. https://doi.org/10.1371/journal.pone.0133466

    Article  CAS  Google Scholar 

  143. Hsieh DJY, Pai P, Wang SGP et al (2015) Prolactin protects cardiomyocytes against intermittent hypoxia-induced cell damage by the modulation of signaling pathways related to cardiac hypertrophy and proliferation. Int J Cardiol 181:255–266. https://doi.org/10.1016/j.ijcard.2014.11.154

    Article  PubMed  Google Scholar 

  144. Merkle CJ, Schuler LA, Schaeffer RC et al (2000) Structural and functional effects of high prolactin levels on injured endothelial cells: evidence for an endothelial prolactin receptor. Endocrine 13:37–46. https://doi.org/10.1385/ENDO:13:1:37

    Article  CAS  PubMed  Google Scholar 

  145. Gonzalez C, Rosas-Hernandez H, Jurado-Manzano B et al (2015) The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol Sin 36:572–586. https://doi.org/10.1038/aps.2014.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Georgiopoulos GA, Stamatelopoulos KS, Lambrinoudaki I et al (2009) Prolactin and preclinical atherosclerosis in menopausal women with cardiovascular risk factors. Hypertension 54:98–105. https://doi.org/10.1161/HYPERTENSIONAHA.109.132100

    Article  CAS  PubMed  Google Scholar 

  147. Vasan RS, Haring R, Friedrich N et al (2014) Positive association of serum prolactin concentrations with all-cause and cardiovascular mortality. Eur Heart J Clin Res 10:1215–1221. https://doi.org/10.1093/eurheartj/ehs233

    Article  CAS  Google Scholar 

  148. Therkelsen KE, Abraham TM, Pedley A et al (2016) Association between prolactin and incidence of cardiovascular risk. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002640

    Article  PubMed  PubMed Central  Google Scholar 

  149. Nakajima R, Nakamura E, Harigaya T (2017) Vasoinhibin, an N-terminal prolactin fragment, directly inhibits cardiac angiogenesis in three-dimensional heart culture. Front Endocrinol (Lausanne) 8:1–6. https://doi.org/10.3389/fendo.2017.0004

    Article  Google Scholar 

  150. González C, Parra A, Ramírez-Peredo J et al (2007) Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Investig 87:1009–1017. https://doi.org/10.1038/labinvest.3700662

    Article  CAS  PubMed  Google Scholar 

  151. Clapp C, González C, Macotela Y et al (2006) Vasoinhibins: a family of N-terminal prolactin fragments that inhibit angiogenesis and vascular function. Front Horm Res 35:64–73. https://doi.org/10.1159/000094309

    Article  CAS  PubMed  Google Scholar 

  152. Gonzalez C, Corbacho AM, Eiserich JP et al (2004) 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. Endocrinology 145:5714–5722. https://doi.org/10.1210/en.2004-0647

    Article  CAS  PubMed  Google Scholar 

  153. Martini JF, Piot C, Humeau LM et al (2000) The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 14:1536–1549. https://doi.org/10.1210/mend.14.10.0543

    Article  CAS  PubMed  Google Scholar 

  154. Tabruyn SP, Sorlet CM, Rentier-Delrue F et al (2003) The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. Mol Endocrinol 17:1815–1823. https://doi.org/10.1210/me.2003-0132

    Article  CAS  PubMed  Google Scholar 

  155. Cox MW, Fu W, Chai H et al (2005) Effects of progesterone and estrogen on endothelial dysfunction in porcine coronary arteries. J Surg Res 124:104–111. https://doi.org/10.1016/j.jss.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  156. Molinari C, Grossini E, Mary DASG et al (2007) Prolactin induces regional vasoconstriction through the adrenergic and nitric oxide mechanisms. Endocrinology 148:4080–4090. https://doi.org/10.1210/en.2006-1577

    Article  CAS  PubMed  Google Scholar 

  157. Ignacak A, Kasztelnik M, Sliwa T et al (2012) Prolactin—not only lactotrophin a “new” view of the “old” hormone. J Physiol Pharmacol 63:435–443

    CAS  PubMed  Google Scholar 

  158. Kim M-J, Shin M-S (2017) Practical management of peripartum cardiomyopathy. Korean J Intern Med 32:393–403. https://doi.org/10.3904/kjim.2016.360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Arany Z, Elkayam U (2016) Peripartum cardiomyopathy. Circulation 133:1397–1409. https://doi.org/10.1161/CIRCULATIONAHA.115.020491

    Article  CAS  PubMed  Google Scholar 

  160. Bole-Feysot C, Goffin V, Edery M et al (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268. https://doi.org/10.1210/edrv.19.3.0334

    Article  CAS  Google Scholar 

  161. Yang X, Meyer K, Friedl A (2013) STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 288:21184–21196. https://doi.org/10.1074/jbc.M113.481119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Masood D-N, Roach EC, Katie G, Beauregard RAK (2010) Impact of sex hormone metabolism on the vascular effects of menopausal hormone therapy in cardiovascular disease. Curr Drug Metab 11:693–714. https://doi.org/10.1016/j.jacc.2007.01.076.White

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lyrio dos Santos R, Bragança da Silva F, Stefanon I (2014) Sex hormones in the cardiovascular system. Horm Mol Biol Clin Invest 18:89–103. https://doi.org/10.1515/hmbci-2013-0048

    Article  CAS  Google Scholar 

  164. Crews JK, Khalil RA (1999) Antagonistic effects of 17 beta-estradiol, progesterone, and testosterone on Ca2 entry mechanisms of coronary vasoconstriction. Arter Thromb Vasc Biol 19:1034–1040

    Article  CAS  Google Scholar 

  165. Migliaccio A, Piccolo D, Castoria G et al (1998) Activation of the Src/p21(ras)/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17:2008–2018. https://doi.org/10.1093/emboj/17.7.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Murphy JG, Khalil R (1999) Decreased [Ca(2+)](i) during inhibition of coronary smooth muscle contraction by 17beta-estradiol, progesterone, and testosterone. J Pharmacol Exp Ther 291:44–52

    CAS  PubMed  Google Scholar 

  167. Wassmann K, Wassmann S, Nickenig G (2005) Progesterone antagonizes the vasoprotective effect of estrogen on antioxidant enzyme expression and function. Circ Res 97:1046–1054. https://doi.org/10.1161/01.RES.0000188212.57180.55

    Article  CAS  PubMed  Google Scholar 

  168. Stamper M, Willett W, Colditz G, Hennekens C (1985) A prospective study of postmenopausal estrogen therapy and coronary heart disease. N Engl J Med 1:1044–1048

    Article  Google Scholar 

  169. Stampfer MJ, Colditz GA, Willett WC (1991) Postmenopausal estrogen therapy and cardiovascular disease: ten-year follow-up from the Nurses’ Health Study. N Engl J Med 325:756–762

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research could not have been conducted without the funding support towards running costs of the Hatter Institute for Cardiovascular Research in Africa from the University of Cape Town, the Medical Research Council South Africa (Grant ID 488000), The National Research Foundation South Africa (Grant ID 105867), and the Maurice Hatter Foundation and The Letten Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Sliwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodogo, V., Azibani, F. & Sliwa, K. Role of pregnancy hormones and hormonal interaction on the maternal cardiovascular system: a literature review. Clin Res Cardiol 108, 831–846 (2019). https://doi.org/10.1007/s00392-019-01441-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-019-01441-x

Keywords

Navigation