Skip to main content
Log in

Limits of the possible: diagnostic image quality in coronary angiography with third-generation dual-source CT

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

The usage of coronary CT angiography (CTA) is appropriate in patients with acute or chronic chest pain; however the diagnostic accuracy may be challenged with increased Agatston score (AS), increased heart rate, arrhythmia and severe obesity. Thus, we aim to determine the potential of the recently introduced third-generation dual-source CT (DSCT) for CTA in a ‘real-life’ clinical setting.

Methods

Two hundred and sixty-eight consecutive patients (age: 67 ± 10 years; BMI: 27 ± 5 kg/m²; 61% male) undergoing clinically indicated CTA with DSCT were included in the retrospective single-center analysis. A contrast-enhanced volume dataset was acquired in sequential (SSM) (n = 151) or helical scan mode (HSM) (n = 117). Coronary segments were classified in diagnostic or non-diagnostic image quality. A subset underwent invasive angiography to determine the diagnostic accuracy of CTA.

Results

SSM (96.8 ± 6%) and HSM (97.5 ± 8%) provided no significant differences in the overall diagnostic image quality. However, AS had significant influence on diagnostic image quality exclusively in SSM (B = 0.003; p = 0.0001), but not in HSM. Diagnostic image quality significantly decreased in SSM in patients with AS ≥2,000 (p = 0.03). SSM (sensitivity: 93.9%; specificity: 96.7%; PPV: 88.6%; NPV: 98.3%) and HSM (sensitivity: 97.4%; specificity: 94.3%; PPV: 86.0%; NPV: 99.0%) provided comparable diagnostic accuracy (p = n.s.). SSM yielded significantly lower radiation doses as compared to HSM (2.1 ± 2.0 vs. 5.1 ± 3.3 mSv; p = 0.0001) in age and BMI-matched cohorts.

Conclusion

SSM in third-generation DSCT enables significant dose savings and provides robust diagnostic image quality in patients with AS ≤2000 independent of heart rate, heart rhythm or obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DSCT:

Dual-source CT

HR:

Heart rates

References

  1. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 34:2949–3003. doi:10.1093/eurheartj/eht296

    Article  PubMed  Google Scholar 

  2. Post F, Gori T, Giannitsis E et al (2015) Criteria of the German Society of Cardiology for the establishment of chest pain units: update 2014. Clin Res Cardiol 104:918–928. doi:10.1007/s00392-015-0888-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sinning C, Zengin E, Waldeyer C et al (2016) SYNTAX score-0 patients: risk stratification in nonobstructive coronary artery disease. Clin Res Cardiol 105:901–911. doi:10.1007/s00392-016-0998-5

    Article  CAS  PubMed  Google Scholar 

  4. Abbara S, Arbab-Zadeh A, Callister TQ et al (2009) SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 3:190–204. doi:10.1016/j.jcct.2009.03.004

    Article  PubMed  Google Scholar 

  5. Abdulla J, Pedersen KS, Budoff M, Kofoed KF (2012) Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis. Int J Cardiovasc Imaging 28:943–953. doi:10.1007/s10554-011-9902-6

    Article  PubMed  Google Scholar 

  6. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557. doi:10.1016/j.jacc.2005.05.056

    Article  PubMed  Google Scholar 

  7. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747. doi:10.1007/s00330-006-0474-0

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776. doi:10.1093/eurheartj/ehn044

    Article  PubMed  Google Scholar 

  9. Opolski MP, Kim W-K, Liebetrau C et al (2015) Diagnostic accuracy of computed tomography angiography for the detection of coronary artery disease in patients referred for transcatheter aortic valve implantation. Clin Res Cardiol 104:471–480. doi:10.1007/s00392-014-0806-z

    Article  PubMed  Google Scholar 

  10. Smith SC, Patel MR, Kramer CM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. J Cardiovasc Comput Tomogr 4(407):e1–e407.e33. doi:10.1016/j.jcct.2010.11.001

    Google Scholar 

  11. Winklehner A, Goetti R, Baumueller S et al (2011) Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Invest Radiol 46:767–773. doi:10.1097/RLI.0b013e3182266448

    Article  CAS  PubMed  Google Scholar 

  12. Layritz C, Muschiol G, Flohr T et al (2013) Automated attenuation-based selection of tube voltage and tube current for coronary CT angiography: reduction of radiation exposure versus a BMI-based strategy with an expert investigator. J Cardiovasc Comput Tomogr 7:303–310. doi:10.1016/j.jcct.2013.08.010

    Article  PubMed  Google Scholar 

  13. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  14. Leipsic J, Abbara S, Achenbach S et al (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8:342–358. doi:10.1016/j.jcct.2014.07.003

    Article  PubMed  Google Scholar 

  15. Bischoff B, Hein F, Meyer T, et al (2009) Impact of a reduced tube voltage on CT angiography and radiation dose. JACC Cardiovascular Imaging 2:940–946. doi:10.1016/j.jcmg.2009.02.015

    Article  PubMed  Google Scholar 

  16. Lee AM, Engel LC, Shah B et al (2012) Coronary computed tomography angiography during arrhythmia: radiation dose reduction with prospectively ECG-triggered axial and retrospectively ECG-gated helical 128-slice dual-source CT. J Cardiovasc Comput Tomogr 6(172–183):e2. doi:10.1016/j.jcct.2012.04.003

    Google Scholar 

  17. Wang Y, Zhang Z, Kong L et al (2008) Dual-source CT coronary angiography in patients with atrial fibrillation: comparison with single-source CT. Eur J Radiol 68:434–441. doi:10.1016/j.ejrad.2008.09.011

    Article  PubMed  Google Scholar 

  18. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487. doi:10.1093/eurheartj/ehi261

    Article  PubMed  Google Scholar 

  19. Raff GL, Chinnaiyan KM, Cury RC et al (2014) SCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8:254–271. doi:10.1016/j.jcct.2014.06.002

    Article  PubMed  Google Scholar 

  20. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137. doi:10.1136/hrt.2008.149971

    Article  CAS  PubMed  Google Scholar 

  21. Hosch W, Heye T, Schulz F et al (2011) Image quality and radiation dose in 256-slice cardiac computed tomography: comparison of prospective versus retrospective image acquisition protocols. Eur J Radiol 80:127–135. doi:10.1016/j.ejrad.2010.07.011

    Article  PubMed  Google Scholar 

  22. Deseive S, Pugliese F, Meave A et al (2015) Image quality and radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for coronary CT angiography: the multicenter, randomized PROTECTION IV study. J Cardiovasc Comput Tomogr 9:278–285. doi:10.1016/j.jcct.2015.03.001

    Article  PubMed  Google Scholar 

  23. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753. doi:10.1148/radiol.2463070989

    Article  PubMed  Google Scholar 

  24. Li M, Zhang G-M, Zhao J-S et al (2014) Diagnostic performance of dual-source CT coronary angiography with and without heart rate control: systematic review and meta-analysis. Clin Radiol 69:163–171. doi:10.1016/j.crad.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  25. Seiffert M, Ojeda F, Müllerleile K et al (2015) Reducing radiation exposure during invasive coronary angiography and percutaneous coronary interventions implementing a simple four-step protocol. Clin Res Cardiol 104:1–7. doi:10.1007/s00392-015-0814-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco M. Ochs.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochs, M.M., Siepen, F.a.d., Fritz, T. et al. Limits of the possible: diagnostic image quality in coronary angiography with third-generation dual-source CT. Clin Res Cardiol 106, 485–492 (2017). https://doi.org/10.1007/s00392-017-1077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-017-1077-2

Keywords

Navigation