Skip to main content
Log in

Applicability of next generation balloon-expandable transcatheter heart valves in aortic annuli exceeding formally approved dimensions

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objectives

Physicians are frequently confronted with patients suffering from aortic stenosis with annular diameters exceeding dimensions in which currently available transcatheter heart valves (THV) are formally approved. Experience in patients receiving significantly undersized Sapien 3 (S3) THV (Edwards Lifesciences, Inc., Irvine, CA, USA) in aortic annuli up to 32 mm has not been reported so far.

Methods

Patients with aortic annuli exceeding the formally determined upper size limit and who received a 29 mm S3, were identified from our database. Calcification pattern and annulus dimension were analyzed retrospectively using the 3mensio Medical Imaging software. Clinical endpoints were adjudicated in accordance with the updated standardized VARC-2 definitions.

Results

21 consecutive patients with aortic annuli ≥28.1 mm received a 29 mm THV. All patients were male (77.4 ± 8.1 year, logEuroSCORE I 22.5 ± 14.1 %). Multi-slice computed tomography and transesophageal echocardiography derived annular dimensions were 30.2 ± 1.5 vs. 28.8 ± 0.9 mm (p = 0.0001). Total calcium load of the aortic valves was 1327 ± 957 mm3. Device success according to VARC-2 definitions was achieved in 100 % (21/21). All-cause 30-day mortality was 0 % (0/21). Rate of permanent pacemaker implantation was 14.3 % (3/21). No paravalvular leakage ≥ grade II was detectable.

Conclusions

Preliminary experience suggests implantation of this type of THV in aortic annuli up to 32 mm to be feasible and safe, in particular calcification patterns. It does not result in a relevant incidence of PVL ≥ grade II, or increased rate of VARC-2 adjudicated clinical endpoints. Also, functional outcomes regarding transvalvular gradients or EOA demonstrate applicability of this THV in such patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EOA:

Effective orifice area

logEuroSCORE:

Logistic European System for Cardiac Operative Risk Evaluation

LVOT:

Left ventricular outflow tract

MSCT:

Multi-slice computed tomography

NYHA:

New York Heart Association

PVL:

Paravalvular leakage

S3:

Edwards Sapien 3

SAVR:

Surgical aortic valve replacement

STS PROM:

Society of Thoracic Surgeons Predicted Risk of Mortality

TA:

Transapical

TAVI:

Transcatheter aortic valve implantation

Tax:

Transaxilary

TEE:

Transesophageal echocardiography

TF:

Transfemoral

THV:

Transcatheter heart valve

TTE:

Transthoracic echocardiography

TVL:

Transvalvular leakage

VARC:

Valve Academic Research Consortium

References

  1. Smith CR, Leon MB, Mack MJ et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364(23):2187–2198

    Article  CAS  PubMed  Google Scholar 

  2. Makkar RR, Fontana GP, Jilaihawi H et al (2012) Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med 366(18):1696–1704

    Article  CAS  PubMed  Google Scholar 

  3. Vahanian A, Alfieri O, Andreotti F et al ESC Committee for Practice Guidelines (CPG); Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS). Guidelines on the management of valvular heart disease (version (2012) The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 2012(42):S1–S44

    Google Scholar 

  4. Nishimura RA, Otto CM, Bonow RO et al (2014) 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63(22):2438–2488

    Article  PubMed  Google Scholar 

  5. Holzamer A, Sitka E, Hengstenberg C et al (2015) Multislice computed tomography-based prediction of the implantation plane in transcatheter aortic valve implantation: determination of the line of perpendicularity and the implanter’s views. Eur J Cardiothorac Surg 48(6):879–886

    Article  PubMed  Google Scholar 

  6. Schmidkonz C, Marwan M, Klinghammer L et al (2014) Interobserver variability of CT angiography for evaluation of aortic annulus dimensions prior to transcatheter aortic valve implantation (TAVI). Eur J Radiol 83(9):1672–1678

    Article  CAS  PubMed  Google Scholar 

  7. Staubach S, Franke J, Gerckens U et al (2013) Impact of aortic valve calcification on the outcome of transcatheter aortic valve implantation: results from the prospective multicenter German TAVI registry. Catheter Cardiovasc Interv 81(2):348–355

    Article  PubMed  Google Scholar 

  8. Husser O, Holzamer A, Resch M et al (2013) Prosthesis sizing for transcatheter aortic valve implantation—comparison of three dimensional transesophageal echocardiography with multislice computed tomography. Int J Cardiol 168(4):3431–3438

    Article  PubMed  Google Scholar 

  9. Leber AW, Eichinger W, Rieber J et al (2013) MSCT guided sizing of the Edwards Sapien XT TAVI device: impact of different degrees of oversizing on clinical outcome. Int J Cardiol 168(3):2658–2664

    Article  CAS  PubMed  Google Scholar 

  10. Mylotte D, Andalib A, Thériault-Lauzier P et al (2015) Transcatheter heart valve failure: a systematic review. Eur Heart J 36(21):1306–1327

    Article  PubMed  Google Scholar 

  11. Schymik G, Schröfel H, Heimeshoff M et al (2015) How to adapt the implantation technique for the new SAPIEN 3 transcatheter heart valve design. J Interv Cardiol 28(1):82–89

    Article  PubMed  Google Scholar 

  12. Seiffert M, Franzen O, Conradi L et al (2010) Series of transcatheter valve-in-valve implantations in high-risk patients with degenerated bioprostheses in aortic and mitral position. Catheter Cardiovasc Interv 76:608–615

    Article  PubMed  Google Scholar 

  13. Kappetein AP, Head SJ, Généreux P et al (2012) Valve Academic Research Consortium (VARC)-2. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document (VARC-2). Eur J Cardiothorac Surg 42:S45–S60

    Article  PubMed  Google Scholar 

  14. Cerillo AG, Mariani M, Berti S, Glauber M (2012) Sizing the aortic annulus. Ann Cardiothorac Surg 1(2):245–256

    PubMed  PubMed Central  Google Scholar 

  15. Zamorano JL, Gonçalves A, Lang R (2014) Imaging to select and guide transcatheter aortic valve implantation. Eur Heart J 35(24):1578–1587

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang TH, Webb JG, Blanke P et al (2015) Incidence and severity of paravalvular aortic regurgitation with multidetector computed tomography nominal area oversizing or undersizing after transcatheter heart valve replacement with the Sapien 3: a comparison with the Sapien XT. JACC Cardiovasc Interv 8(3):462–471

    Article  PubMed  Google Scholar 

  17. Koos R, Mahnken AH, Dohmen G et al (2011) Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation. Int J Cardiol 150(2):142–145

    Article  PubMed  Google Scholar 

  18. Haensig M, Rastan AJ (2012) Aortic valve calcium load before TAVI: is it important? Ann Cardiothorac Surg 1(2):160–164

    PubMed  PubMed Central  Google Scholar 

  19. Schymik G, Heimeshoff M, Bramlage P et al (2014) Ruptures of the device landing zone in patients undergoing transcatheter aortic valve implantation: an analysis of TAVI Karlsruhe (TAVIK) patients. Clin Res Cardiol 103(11):912–920

    Article  PubMed  Google Scholar 

  20. Hayashida K, Bouvier E, Lefèvre T et al (2013) Potential mechanism of annulus rupture during transcatheter aortic valve implantation. Catheter Cardiovasc Interv 82(5):E742–E746

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schaefer.

Ethics declarations

Conflict of interest

Lenard Conradi, Hendrik Treede and Ulrich Schaefer are consultants for Edwards Lifesciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer, A., Linder, M., Treede, H. et al. Applicability of next generation balloon-expandable transcatheter heart valves in aortic annuli exceeding formally approved dimensions. Clin Res Cardiol 105, 585–591 (2016). https://doi.org/10.1007/s00392-015-0954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0954-9

Keywords

Navigation