Skip to main content
Log in

Administration of alpha-lipoic acid could maintain bone mass and bone strength in senile female rats with alcohol consumption

Die Gabe von Alpha-Liponsäure könnte die Knochenmasse und Knochenstärke bei alten weiblichen Ratten mit Alkoholkonsum erhalten

  • Original Contributions
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated the damaging effect of alcohol (ALH) consumption on bone tissue and bone metabolism. Alpha-lipoic acid (ALA) promotes osteoblast proliferation and inhibits osteoclast proliferation, and positively affects bone regeneration; however, reports about effects of ALA on bone loss for aged female rats with ALH consumption are limited. This study was designed to investigate the impact of treatment with ALA on bone loss for aged female rats with ALH consumption. In this study 30 female Sprague–Dawley rats (22 months old), weighing approximately 520 g, were incorporated. The animals were randomly divided into three groups: group CON, group ALH and group ALH + ALA and received saline, ALH, ALH plus ALA treatment until death at 16 weeks, respectively. The results of maintaining bone mass and bone strength in senile female rats with ALH consumption were evaluated by histology, microcomputerized tomography, gene expression analysis and biomechanical tests. Results from this study indicated that ALH + ALA had stronger effects on the prevention and treatment of osteoporosis in senile female rats with ALH consumption. The ALH + ALA produced stronger effects on the bone volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp), BMD and strength of distal femurs, and regulation of osteogenesis and bone resorption-related gene expression. These results seem to indicate that ALA intervention prevents bone loss in senile female rats with ALH consumption.

Zusammenfassung

Frühere Studien haben den schädigenden Effekt von Alkohol (ALH) auf Knochengewebe und -stoffwechsel gezeigt. Alpha-Liponsäure (ALA) fördert die Proliferation von Osteoblasten, hemmt die Proliferation von Osteoklasten und hat einen positiven Effekt auf die Knochenregeneration. Berichte über die Auswirkungen von ALA auf den Knochenverlust in alten weiblichen Ratten mit ALH-Konsum sind limitiert. Diese Studie wurde durchgeführt, um den Effekt der ALA-Behandlung auf den Knochenverlust bei alten weiblichen Ratten mit ALH-Konsum zu untersuchen. In diese Studie wurden 30 weibliche Spraque-Dawley-Ratten (22 Monate alt) mit einem Gewicht von ungefähr 520 g eingeschlossen. Die Tiere wurden in drei Gruppen randomisiert: Gruppe CON, Gruppe ALH und Gruppe ALH + ALA, die jeweils Kochsalzlösung, ALH bzw. eine Behandlung mit ALH + ALA bis zum Tod nach 16 Wochen erhielten. Die Ergebnisse für den Erhalt von Knochenmasse und Knochenstärke bei alten weiblichen Ratten mit ALH-Konsum wurden histologisch sowie mittels Mikrocomputertomographie, Genexpressionsanalyse und biomechanischen Tests evaluiert. Die Resultate dieser Studie zeigten, dass ALH + ALA einen stärkeren Effekt auf die Prävention und Behandlung von Osteoporose bei alten weiblichen Ratten mit ALH-Konsum hatte. ALH + ALA hatte einen größeren Effekt auf BV/TV (bone volume ratio), Tb.Th (trabecular thickness), Tb.N (trabecular number) und Tb.Sp (trabecular separation), BMD sowie die Stärke des distalen Femurs, die Osteogeneseregulation und die knochenresorptionsbedinge Genexpression. Diese Ergebnisse scheinen darauf hinzuweisen, dass die Behandlung mit ALA bei alten weiblichen Ratten mit ALH-Konsum einen Knochenverlust verhindert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Birkhäuser M (2012) Selective estrogen receptor modulators (SERms) for prevention and treatment of postmenopausal osteoporosis. Ther Umsch 69(3):163–172

    Article  PubMed  Google Scholar 

  2. Deselm CJ, Zou W, Teitelbaum SL (2012) Halofuginone prevents estrogen-deficient osteoporosis in mice. J Cell Biochem 113(10):3086–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mithal A, Bansal B, Kyer CS, Ebeling P (2014) The Asia-Pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: a report of International Osteoporosis Foundation. Indian J Endocr Metab 18(4):449

    Article  Google Scholar 

  4. Kutleša Z, Budimir MD (2016) Wine and bone health: a review. J Bone Miner Metab 34(1):11–22

    Article  PubMed  CAS  Google Scholar 

  5. Nishiguchi S, Shiomi S, Tamori A, Habu D, Takeda T, Tanaka T, Ochi H (2000) Effect of ethanol on bone mineral density of rats evaluated by dual-photon x‑ray absorptiometry. J Bone Miner Metab 18(6):317–320

    Article  CAS  PubMed  Google Scholar 

  6. Broulík PD, Vondrová J, Růzicka P, Sedlácek R, Zíma T (2010) The effect of chronic alcohol administration on bone mineral content and bone strength in male rats. Physiol Res 59(4):599

    PubMed  Google Scholar 

  7. Sibonga JD, Iwaniec UT, Shogren KL (2007) Effects of parathyroid hormone (1–34) on tibia in an adult rat model for chronic alcohol abuse. Bone 40(4):1013–1020

    Article  CAS  PubMed  Google Scholar 

  8. Zakaria S, Mat-Husain SZ, Ying-Hwey K et al (2017) Vitamin E improved bone strength and bone minerals in male rats given alcohol. Iran J Basic Med Sci 20(12):1360–1367

    PubMed  PubMed Central  Google Scholar 

  9. Hyunil H, Jong-Ho L, Ha-Neui K, Hyun-Man K, Bok KH, Seungbok L, Hong-Hee K, Hee LZ (2006) alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis. J Immunol 176(1):111

    Article  Google Scholar 

  10. Dong K, Hao P, Xu S, Liu S, Zhou W, Yue X, Rauschfan X, Liu Z (2017) Alpha-lipoic acid alleviates high-glucose suppressed osteogenic differentiation of MC3T3-E1 cells via antioxidant effect and PI3K/Akt signaling pathway. Cell Physiol Biochem 42(5):1897–1906

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R (2010) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588

    Article  Google Scholar 

  12. Tao ZS, Zhou WS, Wu XJ, Zhang X, Wang L, Xie JB, Xu ZJ, Ding GZ, Yang M (2018) Prevention of ovariectomy-induced osteoporosis in rats: comparative study of zoledronic acid, parathyroid hormone (1–34) and strontium ranelate. Z Gerontol Geriatr. https://doi.org/10.1007/s00391-018-1376-x

    Article  PubMed  Google Scholar 

  13. Chen L, Tao ZS, Chen H, Zhou K, Zhou DS (2017) Combined treatment with alendronate and Drynaria rhizome extracts: effect on fracture healing in osteoporotic rats. Z Gerontol Geriatr. https://doi.org/10.1007/s00391-017-1326-z

    Article  PubMed  Google Scholar 

  14. Wauquier F, Philippe C, Léotoing L, Mercier S, Davicco MJ, Lebecque P, Guicheux J, Pilet P, Miot-Noirault E, Poitout V, Alquier T, Coxam V, Wittrant Y (2013) The free fatty acid receptor G protein-coupled receptor 40 (GPR40) protects from bone loss through inhibition of osteoclast differentiation. J Biol Chem 288(9):6542–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kouda K, Iki M, Fujita Y, Tamaki J, Yura A, Kadowaki E, Sato Y, Moon JS, Morikawa M, Tomioka K, Okamoto N, Kurumatani N (2011) Alcohol intake and bone status in elderly Japanese men: baseline data from the Fujiwara-kyo osteoporosis risk in men (FORMEN) study. Bone 49(2):275–280. https://doi.org/10.1016/j.bone.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  16. Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012) Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int 23(1):1–16

    Article  CAS  PubMed  Google Scholar 

  17. Kelly KN, Kelly C (2013) Pattern and cause of fractures in patients who abuse alcohol: what should we do about it? Postgrad Med J 89(1056):578

    Article  PubMed  Google Scholar 

  18. Turner RT (2000) Skeletal response to alcohol. Alcohol Clin Exp Res 24(11):1693–1701

    Article  CAS  PubMed  Google Scholar 

  19. Jones W, Li X, Qu ZC, Perriott L, Whitesell RR, May JM (2002) Uptake, recycling, and antioxidant actions of α‑lipoic acid in endothelial cells. Free Radic Biol Med 33(1):83–93

    Article  CAS  PubMed  Google Scholar 

  20. Fu C, Xu D, Wang CY, Jin Y, Liu Q, Meng Q, Liu KX, Sun HJ, Liu MZ (2015) Alpha-lipoic acid promotes osteoblastic formation in H2O2-treated MC3T3-E1 cells and prevents bone loss in ovariectomized rats. J Cell Physiol 230(9):2184–2201

    Article  CAS  PubMed  Google Scholar 

  21. Roberts JL, Moreau R (2015) Emerging role of alpha-lipoic acid in the prevention and treatment of bone loss. Nutr Rev 73(2):116

    Article  PubMed  Google Scholar 

  22. Nurcan YT (2013) The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol 718(1):469–474

    Google Scholar 

  23. Sibonga JD, Iwaniec UT, Shogren KL, Rosen CJ, Turner RT (2007) Effects of parathyroid hormone (1–34) on tibia in an adult rat model for chronic alcohol abuse. Bone 40(4):1013

    Article  CAS  PubMed  Google Scholar 

  24. Maurel DB, Jaffre C, Rochefort GY, Aveline PC, Boisseau N, Uzbekov R, Gosset D, Pichon C, Fazzalari NL, Pallu S, Benhamou CL (2011) Low bone accrual is associated with osteocyte apoptosis in alcohol-induced osteopenia. Bone 49(3):543–552

    Article  CAS  PubMed  Google Scholar 

  25. Chen JR, Lazarenko OP, Shankar K, Blackburn ML, Badger TM, Ronis MJ (2010) A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/β-catenin signaling. J Bone Miner Res 25(5):1117

    Article  CAS  PubMed  Google Scholar 

  26. Cui Q, Wang Y, Saleh KJ, Wang GJ, Balian G (2006) Alcohol-induced adipogenesis in a cloned bone-marrow stem cell. J Bone Joint Surg Am 88(3):148–154

    PubMed  Google Scholar 

  27. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Kou X, Chen C, Yu W, Su Y, Kim Y, Shi S, Liu Y (2016) Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells. Stem Cells 34(8):2157–2168

    Article  CAS  PubMed  Google Scholar 

  29. González-Reimers E, García-Valdecasas-Campelo E, Santolaria-Fernández F, Sánchez-Pérez MJ, Rodríguez-Rodríguez E, Gómez-Rodríguez MA, Viña-Rodríguez J (2008) Prognostic value of nutritional status in alcoholics, assessed by double-energy x‑ray absorptiometry. Alcohol Alcohol 43(3):314–319

    Article  PubMed  CAS  Google Scholar 

  30. Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Kim GS, Kim HH (2006) Antioxidant α‑lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-κB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-κB ligand and tumor necrosis factor‑α. Free Radic Biol Med 40(9):1483–1493

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Conflict of interest

J. Zhan, Y. Jiang, L. Zhu, W. Fang and G. Wang declare that they have no competing interests.

All procedures performed in studies involving animal testing were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Junfeng Zhan and Ya Jiang contributed equally to this work and share the first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Jiang, Y., Zhu, N. et al. Administration of alpha-lipoic acid could maintain bone mass and bone strength in senile female rats with alcohol consumption. Z Gerontol Geriat 53, 679–686 (2020). https://doi.org/10.1007/s00391-019-01630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-019-01630-3

Keywords

Schlüsselwörter

Navigation