Skip to main content
Log in

mRNA sequencing provides new insights into the pathogenesis of Hirschsprung’s disease in mice

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to use RNA sequencing and RT-qPCR to identify the main susceptibility genes linked to the occurrence and development of Hirschsprung disease in the colonic tissues of EDNRBm1yzcm and wild mice.

Methods

RNA was extracted from colon tissues of 3 mutant homozygous mice and 3 wild mice. RNA degradation, contamination concentration, and integrity were then measured. The extracted RNA was then sequenced using the Illumina platform. The obtained sequence data are filtered to ensure data quality and compared to the reference genome for further analysis. DESeq2 was used for gene expression analysis of the raw data. In addition, graphene oxide enrichment analysis and RT-qPCR validation were also performed.

Results

This study identified 8354 differentially expressed genes in EDNRBm1yzcm and wild mouse colon tissues by RNA sequencing, including 4346 upregulated genes and 4005 downregulated genes. Correspondingly, the results of RT-qPCR analysis showed good correlation with the transcriptome data. In addition, GO and KEGG enrichment results suggested that there were 8103 terms and 320 pathways in all DEGs. When P < 0.05, 1081 GO terms and 320 KEGG pathways reached a significant level. Finally, through the existing studies and the enrichment results of differentially expressed genes, it was determined that axon guidance and the focal adhesion pathway may be closely related to the occurrence of HSCR.

Conclusions

This study analyzed and identified the differential genes in colonic tissues between EDNRBm1yzcm mice and wild mice, which provided new insight for further mining the potential pathogenic genes of Hirschsprung’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated from this study were submitted to National Genomics Data Center (NGDC) with accession code: PRJNA1003694.

References

  1. Garcia-Barcelo MM, Tang CS, Ngan ES et al (2009) Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci USA 106(8):2694–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8(6):466–479

    CAS  PubMed  Google Scholar 

  3. Granstrom AL, Danielson J, Husberg B et al (2015) Adult outcomes after surgery for Hirschsprung’s disease: evaluation of bowel function and quality of life. J Pediatr Surg 50(11):1865–1869

    PubMed  Google Scholar 

  4. Amiel J, Attie T, Jan D et al (1996) Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 5(3):355–357

    CAS  PubMed  Google Scholar 

  5. Luo Y, Ceccherini I, Pasini B et al (1993) Close linkage with the RET protooncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung disease. Hum Mol Genet 2(11):1803–1808

    CAS  PubMed  Google Scholar 

  6. Angrist M, Kauffman E, Slaugenhaupt SA, Matise TC, Puffenberger EG, Washington SS, Lipson A, Cass DT, Reyna T, Weeks DE et al (1993) A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10. Nat Genet 4(4):351–356

    CAS  PubMed  Google Scholar 

  7. Fitze G, Konig IR, Paditz E et al (2008) Compound effect of PHOX2B and RET gene variants in congenital central hypoventilation syndrome combined with Hirschsprung disease. Am J Med Genet A 146A(11):1486–1489

    CAS  PubMed  Google Scholar 

  8. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18(1):60–64

    CAS  PubMed  Google Scholar 

  9. Butler Tjaden NE, Trainor PA (2013) The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 162(1):1–15

    CAS  PubMed  Google Scholar 

  10. Borrego S, Wright FA, Fernandez RM et al (2003) A founding locus within the RET proto-oncogene may account for a large proportion of apparently sporadic Hirschsprung disease and a subset of cases of sporadic medullary thyroid carcinoma. Am J Hum Genet 72(1):88–100

    CAS  PubMed  Google Scholar 

  11. Emison ES, McCallion AS, Kashuk CS et al (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434(7035):857–863

    CAS  PubMed  Google Scholar 

  12. Emison ES, Garcia-Barcelo M, Grice EA et al (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87(1):60–74

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hofstra RM, Valdenaire O, Arch E et al (1999) A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet 64(1):304–308

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Puffenberger EG, Hosoda K, Washington SS et al (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79(7):1257–1266

    CAS  PubMed  Google Scholar 

  15. Bidaud C, Salomon R, Van Camp G, Pelet A, Attie T, Eng C, Bonduelle M, Amiel J, Nihoul-Fekete C, Willems PJ, Munnich A, Lyonnet S (1997) Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet 5:247–251

    CAS  PubMed  Google Scholar 

  16. Tang W, Tang J, He J et al (2015) SLIT2/ROBO1-miR-218-1-RET/PLAG1: a new disease pathway involved in Hirschsprung’s disease. J Cell Mol Med 19(6):1197–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen G, Du C, Shen Z et al (2017) MicroRNA-939 inhibits cell proliferation via targeting LRSAM1 in Hirschsprung’s disease. Aging (Albany NY) 9(12):2471–2479

    CAS  PubMed  Google Scholar 

  18. Wang G, Guo F, Wang H et al (2017) Downregulation of microRNA-483-5p promotes cell proliferation and invasion by targeting GFRA4 in Hirschsprung’s disease. DNA Cell Biol 36(11):930–937

    CAS  PubMed  Google Scholar 

  19. Zhu D, Xie H, Li H et al (2015) Nidogen-1 is a common target of microRNAs MiR-192/215 in the pathogenesis of Hirschsprung’s disease. J Neurochem 134(1):39–46

    CAS  PubMed  Google Scholar 

  20. Lee H, Huang AY, Wang LK et al (2020) Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med 22(3):490–499

    CAS  PubMed  Google Scholar 

  21. Mori M, Haskell G, Kazi Z et al (2017) Sensitivity of whole exome sequencing in detecting infantile- and late-onset Pompe disease. Mol Genet Metab 122(4):189–197

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang W, Wei C, Li P et al (2018) Integrative analysis of mRNA and lncRNA profiles identified pathogenetic lncRNAs in esophageal squamous cell carcinoma. Gene 661:169–175

    CAS  PubMed  Google Scholar 

  23. Pan WK, Zhang YF, Yu H et al (2017) Identifying key genes associated with Hirschsprung’s disease based on bioinformatics analysis of RNA-sequencing data. World J Pediatr 13(3):267–273

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen B, Ouyang HL, Wang WH et al (2016) Hirschsprung disease is associated with an L286P mutation in the fifth transmembrane domain of the endothelin-B receptor in the N-ethyl-N-nitrosourea-induced mutant line. Exp Anim 65(3):245–251

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    CAS  PubMed  Google Scholar 

  28. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    PubMed  PubMed Central  Google Scholar 

  29. Yu G, Wang L, Han Y, He Q (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–297

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaitoun I, Erickson CS, Barlow AJ et al (2013) Altered neuronal density and neurotransmitter expression in the ganglionated region of Ednrb null mice: implications for Hirschsprung’s disease. Neurogastroenterol Motil 25(3):e233-244

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gershon MD (1999) Endothelin and the development of the enteric nervous system. Clin Exp Pharmacol Physiol 26(12):985–988

    CAS  PubMed  Google Scholar 

  32. Wu JJ, Chen JX, Rothman TP et al (1999) Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 126(6):1161–1173

    CAS  PubMed  Google Scholar 

  33. Watanabe Y, Stanchina L, Lecerf L et al (2017) Differentiation of mouse enteric nervous system progenitor cells is controlled by endothelin 3 and requires regulation of Ednrb by SOX10 and ZEB2. Gastroenterology 152(5):1139-1150 e1134

    CAS  PubMed  Google Scholar 

  34. Garavelli L, Mainardi PC (2007) Mowat-Wilson syndrome. Orphanet J Rare Dis 2:42

    PubMed  PubMed Central  Google Scholar 

  35. Pingault V, Bondurand N, Kuhlbrodt K et al (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18(2):171–173

    CAS  PubMed  Google Scholar 

  36. Wang LL, Fan Y, Zhou FH et al (2011) Semaphorin 3A expression in the colon of Hirschsprung disease. Birth Defects Res A Clin Mol Teratol 91(9):842–847

    CAS  PubMed  Google Scholar 

  37. Luzon-Toro B, Fernandez RM, Torroglosa A et al (2013) Mutational spectrum of semaphorin 3A and semaphorin 3D genes in Spanish Hirschsprung patients. PLoS ONE 8(1):e54800

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang LL, Zhang Y, Fan Y et al (2012) SEMA3A rs7804122 polymorphism is associated with Hirschsprung disease in the Northeastern region of China. Birth Defects Res A Clin Mol Teratol 94(2):91–95

    CAS  PubMed  Google Scholar 

  39. Gunadi, Makhmudi A, Agustriani N, Rochadi (2016) Effects of SEMA3 polymorphisms in Hirschsprung disease patients. Pediatr Surg Int 32(11):1025–1028

    CAS  PubMed  Google Scholar 

  40. Kapoor A, Jiang Q, Chatterjee S et al (2015) Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 susceptibility polymorphisms. Hum Mol Genet 24(10):2997–3003

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang Q, Arnold S, Heanue T et al (2015) Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 96(4):581–596

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao H, Zhang ZB, Jiang ZJ et al (2010) Mutation and expression of WNT8b gene and SHH gene in Hirschsprung disease. Zhonghua Wei Chang Wai Ke Za Zhi 13(10):758–761

    PubMed  Google Scholar 

  43. Wallace AS, Schmidt C, Schachner M et al (2010) L1cam acts as a modifier gene during enteric nervous system development. Neurobiol Dis 40(3):622–633

    CAS  PubMed  Google Scholar 

  44. Watanabe Y, Broders-Bondon F, Baral V et al (2013) Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 379(1):92–106

    CAS  PubMed  Google Scholar 

  45. Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotta R, Molnar D, Goldstein AM (2013) Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol 382:446–456

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Soret R, Mennetrey M, Bergeron KF et al (2015) A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J Clin Invest 125(12):4483–4496

    PubMed  PubMed Central  Google Scholar 

  47. Nishida S, Yoshizaki H, Yasui Y et al (2018) Collagen VI suppresses fibronectin-induced enteric neural crest cell migration by downregulation of focal adhesion proteins. Biochem Biophys Res Commun 495(1):1461–1467

    CAS  PubMed  Google Scholar 

  48. Gosain A, Barlow-Anacker AJ, Erickson CS et al (2015) Impaired cellular immunity in the murine neural crest conditional deletion of endothelin receptor-B model of Hirschsprung’s disease. PLoS ONE 10(6):e0128822

    PubMed  PubMed Central  Google Scholar 

  49. Wallace AS, Tan MX, Schachner M et al (2011) L1cam acts as a modifier gene for members of the endothelin signalling pathway during enteric nervous system development. Neurogastroenterol Motil 23(11):e510-522

    CAS  PubMed  Google Scholar 

  50. Young HM, Stamp LA, Hofstra RM (2015) Hirschsprung disease and activation of Hedgehog signaling via GLI1-3 mutations. Gastroenterology 149(7):1672–1675

    PubMed  Google Scholar 

  51. Nagy N, Barad C, Graham HK et al (2016) Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development 143(2):264–275

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chen Bing of Yangzhou University to donate EDNRBm1yzcm mice.

Funding

This research was funded by the National Natural Science Foundation of China, grant number 81770514. The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RHD was involved in conceptualization, project administration, and funding acquisition. QWY, FWW, and ZFW were involved in methodology, data curation, and visualization. JJG was responsible for software and resources. TJC did validation. LGB performed formal analysis. GY performed investigation. QWY contributed to writing––original draft preparation. CZL contributed to writing––review and editing. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ruihua Dang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wang, F., Wang, Z. et al. mRNA sequencing provides new insights into the pathogenesis of Hirschsprung’s disease in mice. Pediatr Surg Int 39, 268 (2023). https://doi.org/10.1007/s00383-023-05544-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-023-05544-5

Keywords

Navigation