Skip to main content

Advertisement

Log in

Necrotizing enterocolitis: recent advances in treatment with translational potential

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Necrotizing enterocolitis (NEC) is one of the most prevalent and devastating gastrointestinal disorders in neonates. Despite advances in neonatal care, the incidence and mortality due to NEC remain high, highlighting the need to devise novel treatments for this disease. There have been a number of recent advancements in therapeutic approaches for the treatment of NEC; these involve remote ischemic conditioning (RIC), stem cell therapy, breast milk components (human milk oligosaccharides, exosomes, lactoferrin), fecal microbiota transplantation, and immunotherapy. This review summarizes the most recent advances in NEC treatment currently underway as well as their applicability and associated challenges and limitations, with the aim to provide new insight into the paradigm of care for NEC worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Neu J, Walker WA (2011) Necrotizing enterocolitis. N Engl J Med 364(3):255–264

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alganabi M, Lee C, Bindi E, Li B, Pierro A (2019) Recent advances in understanding necrotizing enterocolitis. F1000Res 8:107

    CAS  Google Scholar 

  3. Kim JH, Sampath V, Canvasser J (2020) Challenges in diagnosing necrotizing enterocolitis. Pediatr Res 88(Suppl 1):16–20

    PubMed  Google Scholar 

  4. Stout G, Lambert DK, Baer VL, Gordon PV, Henry E, Wiedmeier SE et al (2008) Necrotizing enterocolitis during the first week of life: a multicentered case-control and cohort comparison study. J Perinatol 28(8):556–560

    CAS  PubMed  Google Scholar 

  5. Guthrie SO, Gordon PV, Thomas V, Thorp JA, Peabody J, Clark RH (2003) Necrotizing enterocolitis among neonates in the United States. J Perinatol 23(4):278–285

    PubMed  Google Scholar 

  6. Fitzgibbons SC, Ching Y, Yu D, Carpenter J, Kenny M, Weldon C et al (2009) Mortality of necrotizing enterocolitis expressed by birth weight categories. J Pediatr Surg 44(6):1072–1075

    PubMed  Google Scholar 

  7. Luig M, Lui K, NSW & ACT NICUS Group. Epidemiology of necrotizing enterocolitis--Part II: risks and susceptibility of premature infants during the surfactant era: a regional study. J Paediatr Child Health. 2005;41(4):174–9.

  8. Horbar JD, Badger GJ, Carpenter JH, Fanaroff AA, Kilpatrick S, LaCorte M et al (2002) Trends in mortality and morbidity for very low birth weight infants, 1991–1999. Pediatrics 110(1 Pt 1):143–151

    PubMed  Google Scholar 

  9. Cotten CM, Oh W, McDonald S, Carlo W, Fanaroff AA, Duara S et al (2005) Prolonged hospital stay for extremely premature infants: risk factors, center differences, and the impact of mortality on selecting a best-performing center. J Perinatol 25(10):650–655

    PubMed  Google Scholar 

  10. Rich BS, Dolgin SE (2017) Necrotizing Enterocolitis. Pediatr Rev 38(12):552–559

    PubMed  Google Scholar 

  11. Horwitz JR, Lally KP, Cheu HW, Vazquez WD, Grosfeld JL, Ziegler MM (1995) Complications after surgical intervention for necrotizing enterocolitis: a multicenter review. J Pediatr Surg 30(7):994–998

    CAS  PubMed  Google Scholar 

  12. Hintz SR, Kendrick DE, Stoll BJ, Vohr BR, Fanaroff AA, Donovan EF et al (2005) Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115(3):696–703

    PubMed  Google Scholar 

  13. Bisquera JA, Cooper TR, Berseth CL (2002) Impact of necrotizing enterocolitis on length of stay and hospital charges in very low birth weight infants. Pediatrics 109(3):423–428

    PubMed  Google Scholar 

  14. Rose AT, Patel RM (2018) A critical analysis of risk factors for necrotizing enterocolitis. Semin Fetal Neonatal Med 23(6):374–379

    PubMed  PubMed Central  Google Scholar 

  15. Lu Q, Cheng S, Zhou M, Yu J (2017) Risk factors for necrotizing enterocolitis in neonates: a retrospective case-control study. Pediatr Neonatol 58(2):165–170

    PubMed  Google Scholar 

  16. García-Muñoz Rodrigo F, Galán Henríquez G, Figueras Aloy J, García-Alix PA (2014) Outcomes of very-low-birth-weight infants exposed to maternal clinical chorioamnionitis: a multicentre study. Neonatology 106(3):229–234

    PubMed  Google Scholar 

  17. Cetinkaya M, Ozkan H, Koksal N (2012) Maternal preeclampsia is associated with increased risk of necrotizing enterocolitis in preterm infants. Early Hum Dev 88(11):893–898

    PubMed  Google Scholar 

  18. Czyrko C, Del Pin CA, O’Neill JA, Peckham GJ, Ross AJ. Maternal cocaine abuse and necrotizing enterocolitis: outcome and survival. J Pediatr Surg. 1991 Apr;26(4):414–8; discussion 419–421.

  19. Downard CD, Grant SN, Maki AC, Krupski MC, Matheson PJ, Bendon RW et al (2012) Maternal cigarette smoking and the development of necrotizing enterocolitis. Pediatrics 130(1):78–82

    PubMed  Google Scholar 

  20. Travers CP, Clark RH, Spitzer AR, Das A, Garite TJ, Carlo WA (2017) Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: prospective cohort study. BMJ 28(356):j1039

    Google Scholar 

  21. Been JV, Lievense S, Zimmermann LJI, Kramer BW, Wolfs TGAM (2013) Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J Pediatr 162(2):236-242.e2

    PubMed  Google Scholar 

  22. Weintraub AS, Ferrara L, Deluca L, Moshier E, Green RS, Oakman E et al (2012) Antenatal antibiotic exposure in preterm infants with necrotizing enterocolitis. J Perinatol 32(9):705–709

    CAS  PubMed  Google Scholar 

  23. Guillet R, Stoll BJ, Cotten CM, Gantz M, McDonald S, Poole WK et al (2006) Association of H2-blocker therapy and higher incidence of necrotizing enterocolitis in very low birth weight infants. Pediatrics 117(2):e137-142

    PubMed  Google Scholar 

  24. Singh R, Visintainer PF, Frantz ID, Shah BL, Meyer KM, Favila SA et al (2011) Association of necrotizing enterocolitis with anemia and packed red blood cell transfusions in preterm infants. J Perinatol 31(3):176–182

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Denning NL, Prince JM (2018) Neonatal intestinal dysbiosis in necrotizing enterocolitis. Mol Med 24(1):4

    PubMed  PubMed Central  Google Scholar 

  26. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG (2015) The infant microbiome development: mom matters. Trends Mol Med 21(2):109–117

    PubMed  Google Scholar 

  27. Safe M, Chan WH, Leach ST, Sutton L, Lui K, Krishnan U (2016) Widespread use of gastric acid inhibitors in infants: Are they needed? Are they safe? World J Gastrointest Pharmacol Ther 7(4):531–539

    PubMed  PubMed Central  Google Scholar 

  28. Zani A, Pierro A. Necrotizing enterocolitis: controversies and challenges. F1000Res. 2015;4:1373

  29. Geng Q, Wang Y, Li L, Guo C (2018) Early postoperative outcomes of surgery for intestinal perforation in NEC based on intestinal location of disease. Medicine (Baltimore) 97(39):e12234

    PubMed  Google Scholar 

  30. Chen Y, Koike Y, Chi L, Ahmed A, Miyake H, Li B, et al. Formula feeding and immature gut microcirculation promote intestinal hypoxia, leading to necrotizing enterocolitis. Dis Model Mech. 2019;12(12). https://doi.org/10.1242/dmm.040998

  31. Chen Y, Koike Y, Miyake H, Li B, Lee C, Hock A et al (2016) Formula feeding and systemic hypoxia synergistically induce intestinal hypoxia in experimental necrotizing enterocolitis. Pediatr Surg Int 32(12):1115–1119

    CAS  PubMed  Google Scholar 

  32. Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F (2003) Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 6(1):6–23

    PubMed  Google Scholar 

  33. Kosloske AM (1994) Epidemiology of necrotizing enterocolitis. Acta Paediatr Suppl 396:2–7

    CAS  PubMed  Google Scholar 

  34. Llanos AR, Moss ME, Pinzòn MC, Dye T, Sinkin RA, Kendig JW (2002) Epidemiology of neonatal necrotising enterocolitis: a population-based study. Paediatr Perinat Epidemiol 16(4):342–349

    PubMed  Google Scholar 

  35. Ward JBJ, Keely SJ, Keely SJ (2014) Oxygen in the regulation of intestinal epithelial transport. J Physiol 592(12):2473–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Madsen JL, Søndergaard SB, Møller S (2006) Meal-induced changes in splanchnic blood flow and oxygen uptake in middle-aged healthy humans. Scand J Gastroenterol 41(1):87–92

    PubMed  Google Scholar 

  37. Sieber C, Beglinger C, Jaeger K, Hildebrand P, Stalder GA (1991) Regulation of postprandial mesenteric blood flow in humans: evidence for a cholinergic nervous reflex. Gut 32(4):361–366

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Havranek T, Rahimi M, Hall H, Armbrecht E (2015) Feeding preterm neonates with patent ductus arteriosus (PDA): intestinal blood flow characteristics and clinical outcomes. J Matern Fetal Neonatal Med 28(5):526–530

    PubMed  Google Scholar 

  39. Fang S, Kempley ST, Gamsu HR (2001) Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity. Arch Dis Child Fetal Neonatal Ed 85(1):F42-45

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Downard CD, Grant SN, Matheson PJ, Guillaume AW, Debski R, Fallat ME et al (2011) Altered intestinal microcirculation is the critical event in the development of necrotizing enterocolitis. J Pediatr Surg 46(6):1023–1028

    PubMed  Google Scholar 

  41. Good M, Sodhi CP, Yamaguchi Y, Jia H, Lu P, Fulton WB et al (2016) The human milk oligosaccharide 2’-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine. Br J Nutr 116(7):1175–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yazji I, Sodhi CP, Lee EK, Good M, Egan CE, Afrazi A et al (2013) Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci U S A 110(23):9451–9456

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu X, Radulescu A, Zorko N, Besner GE (2009) Heparin-binding EGF-like growth factor increases intestinal microvascular blood flow in necrotizing enterocolitis. Gastroenterology 137(1):221–230

    PubMed  Google Scholar 

  44. Bowker RM, Yan X, Managlia E, Liu SXL, Marek C, Tan XD et al (2018) Dimethyloxalylglycine preserves the intestinal microvasculature and protects against intestinal injury in a neonatal mouse NEC model: role of VEGF signaling. Pediatr Res 83(2):545–553

    CAS  PubMed  Google Scholar 

  45. Yan X, Managlia E, Liu SX, Tan XD, Wang X, Marek C et al (2016) Lack of VEGFR2 signaling causes maldevelopment of the intestinal microvasculature and facilitates necrotizing enterocolitis in neonatal mice. Am J Physiol Gastrointest Liver Physiol 310(9):G716-725

    PubMed  PubMed Central  Google Scholar 

  46. Koike Y, Li B, Ganji N, Zhu H, Miyake H, Chen Y et al (2020) Remote ischemic conditioning counteracts the intestinal damage of necrotizing enterocolitis by improving intestinal microcirculation. Nat Commun 11(1):4950

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yellon DM, Baxter GF (1995) A “second window of protection” or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol 27(4):1023–1034

    CAS  PubMed  Google Scholar 

  48. Kis A, Yellon DM, Baxter GF (2003) Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase. J Mol Cell Cardiol 35(9):1063–1071

    CAS  PubMed  Google Scholar 

  49. Zhou G, Li MH, Tudor G, Lu HT, Kadirvel R, Kallmes D (2018) Remote Ischemic Conditioning in Cerebral Diseases and Neurointerventional Procedures: Recent Research Progress. Front Neurol 9:339

    PubMed  PubMed Central  Google Scholar 

  50. Kitagawa K, Saitoh M, Ishizuka K, Shimizu S (2018) Remote Limb Ischemic Conditioning during Cerebral Ischemia Reduces Infarct Size through Enhanced Collateral Circulation in Murine Focal Cerebral Ischemia. J Stroke Cerebrovasc Dis 27(4):831–838

    PubMed  Google Scholar 

  51. Ren C, Li N, Li S, Han R, Huang Q, Hu J et al (2018) Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis 9(5):869–879

    PubMed  PubMed Central  Google Scholar 

  52. Zheng Y, Lu X, Li J, Zhang Q, Reinhardt JD (2014) Impact of remote physiological ischemic training on vascular endothelial growth factor, endothelial progenitor cells and coronary angiogenesis after myocardial ischemia. Int J Cardiol 177(3):894–901

    PubMed  Google Scholar 

  53. Kono Y, Fukuda S, Hanatani A, Nakanishi K, Otsuka K, Taguchi H et al (2014) Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Des Devel Ther 8:1175–1181

    PubMed  PubMed Central  Google Scholar 

  54. Koike Y, Li B, Chen Y, Ganji N, Alganabi M, Miyake H et al (2021) Live intravital intestine with blood flow visualization in neonatal mice using two-photon laser scanning microscopy. Bio Protoc 11(5):e3937

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hosfield BD, Hunter CE, Li H, Drucker NA, Pecoraro AR, Manohar K, et al. A hydrogen-sulfide derivative of mesalamine reduces severity of intestinal and lung injury in necrotizing enterocolitis via endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2022. https://doi.org/10.1152/ajpregu.00229.2021

  56. Drucker NA, Jensen AR, Te Winkel JP, Markel TA (2019) Hydrogen sulfide donor GYY4137 acts through endothelial nitric oxide to protect intestine in murine models of necrotizing enterocolitis and intestinal ischemia. J Surg Res 234:294–302

    CAS  PubMed  Google Scholar 

  57. Drucker NA, Jensen AR, Ferkowicz M, Markel TA (2018) Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 53(9):1692–1698

    PubMed  Google Scholar 

  58. Di Lorenzo M, Krantis A (2002) Nitric oxide synthase isoenzyme activities in a premature piglet model of necrotizing enterocolitis: effects of nitrergic manipulation. Pediatr Surg Int 18(7):624–629

    PubMed  Google Scholar 

  59. Zozaya C, Ganji N, Li B, Janssen Lok M, Lee C, Koike Y, et al. Remote ischaemic conditioning in necrotising enterocolitis: a phase I feasibility and safety study. Arch Dis Child Fetal Neonatal Ed. 2022 Aug 8;fetalneonatal-2022–324174.

  60. Walsh MC, Kliegman RM (1986) Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am 33(1):179–201

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ganji N, Li B, Ahmad I, Daneman A, Deshpande P, Dhar V et al (2022) Remote ischemic conditioning in necrotizing enterocolitis: study protocol of a multi-center phase II feasibility randomized controlled trial. Pediatr Surg Int 38(5):679–694

    PubMed  Google Scholar 

  62. Tayman C, Uckan D, Kilic E, Ulus AT, Tonbul A, Murat Hirfanoglu I et al (2011) Mesenchymal stem cell therapy in necrotizing enterocolitis: a rat study. Pediatr Res 70(5):489–494

    PubMed  Google Scholar 

  63. McCulloh CJ, Olson JK, Zhou Y, Wang Y, Besner GE (2017) Stem cells and necrotizing enterocolitis: a direct comparison of the efficacy of multiple types of stem cells. J Pediatr Surg 52(6):999–1005

    PubMed  PubMed Central  Google Scholar 

  64. McCulloh CJ, Olson JK, Wang Y, Vu J, Gartner S, Besner GE (2017) Evaluating the efficacy of different types of stem cells in preserving gut barrier function in necrotizing enterocolitis. J Surg Res 15(214):278–285

    Google Scholar 

  65. Yang J, Watkins D, Chen CL, Bhushan B, Zhou Y, Besner GE (2012) Heparin-binding epidermal growth factor-like growth factor and mesenchymal stem cells act synergistically to prevent experimental necrotizing enterocolitis. J Am Coll Surg 215(4):534–545

    PubMed  PubMed Central  Google Scholar 

  66. Gosden CM (1983) Amniotic fluid cell types and culture. Br Med Bull 39(4):348–354

    CAS  PubMed  Google Scholar 

  67. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO (2001) The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36(11):1662–1665

    CAS  PubMed  Google Scholar 

  68. In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.

  69. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M (2003) Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18(7):1489–1493

    PubMed  Google Scholar 

  70. De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    PubMed  Google Scholar 

  71. Zani A, Cananzi M, Fascetti-Leon F, Lauriti G, Smith VV, Bollini S et al (2014) Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 63(2):300–309

    CAS  PubMed  Google Scholar 

  72. McElroy SJ, Hobbs S, Kallen M, Tejera N, Rosen MJ, Grishin A et al (2012) Transactivation of EGFR by LPS induces COX-2 expression in enterocytes. PLoS ONE 7(5):e38373

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF et al (2007) Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest 117(1):258–269

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zani A, Cananzi M, Lauriti G, Fascetti-Leon F, Wells J, Siow B et al (2014) Amniotic fluid stem cells prevent development of ascites in a neonatal rat model of necrotizing enterocolitis. Eur J Pediatr Surg 24(1):57–60

    PubMed  Google Scholar 

  75. Zani A, Zani-Ruttenstock E, Peyvandi F, Lee C, Li B, Pierro A (2016) A spectrum of intestinal injury models in neonatal mice. Pediatr Surg Int 32(1):65–70

    PubMed  Google Scholar 

  76. Li B, Lee C, O’Connell JS, Antounians L, Ganji N, Alganabi M et al (2020) Activation of Wnt signaling by amniotic fluid stem cell-derived extracellular vesicles attenuates intestinal injury in experimental necrotizing enterocolitis. Cell Death Dis 11(9):750

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li B, Lee C, Cadete M, Zhu H, Koike Y, Hock A et al (2019) Impaired Wnt/β-catenin pathway leads to dysfunction of intestinal regeneration during necrotizing enterocolitis. Cell Death Dis 10(10):743

    PubMed  PubMed Central  Google Scholar 

  78. Baghaban Eslaminejad M, Jahangir S (2012) Amniotic fluid stem cells and their application in cell-based tissue regeneration. Int J Fertil Steril 6(3):147–156

    PubMed  PubMed Central  Google Scholar 

  79. Kunisaki SM (2018) Amniotic fluid stem cells for the treatment of surgical disorders in the fetus and neonate. Stem Cells Transl Med 7(11):767–773

    PubMed  PubMed Central  Google Scholar 

  80. Akduman H, Dilli D, Ergün E, Çakmakçı E, Çelebi SK, Çitli R et al (2021) Successful mesenchymal stem cell application in supraventricular tachycardia-related necrotizing enterocolitis: a case report. Fetal Pediatr Pathol 40(3):250–255

    PubMed  Google Scholar 

  81. Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M et al (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE 8(7):e68451

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40(21):10937–10949

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Théry C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3:15.

  84. Nolte-’t Hoen ENM, Buermans HPJ, Waasdorp M, Stoorvogel W, Wauben MHM, ’t Hoen PAC. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272–85.

  85. van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140(1):13–21

    PubMed  Google Scholar 

  86. Rager TM, Olson JK, Zhou Y, Wang Y, Besner GE (2016) Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J Pediatr Surg 51(6):942–947

    PubMed  PubMed Central  Google Scholar 

  87. McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S et al (2018) Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg 53(6):1215–1220

    PubMed  PubMed Central  Google Scholar 

  88. Villamor-Martinez E, Hundscheid T, Kramer BW, Hooijmans CR, Villamor E (2020) Stem cells as therapy for necrotizing enterocolitis: a systematic review and meta-analysis of preclinical studies. Front Pediatr 8:578984

    PubMed  PubMed Central  Google Scholar 

  89. O’Connell JS, Lee C, Farhat N, Antounians L, Zani A, Li B et al (2021) Administration of extracellular vesicles derived from human amniotic fluid stem cells: a new treatment for necrotizing enterocolitis. Pediatr Surg Int 37(3):301–309

    PubMed  Google Scholar 

  90. O’Connell JS, Li B, Zito A, Ahmed A, Cadete M, Ganji N et al (2021) Treatment of necrotizing enterocolitis by conditioned medium derived from human amniotic fluid stem cells. PLoS ONE 16(12):e0260522

    PubMed  PubMed Central  Google Scholar 

  91. Beretti F, Zavatti M, Casciaro F, Comitini G, Franchi F, Barbieri V et al (2018) Amniotic fluid stem cell exosomes: therapeutic perspective. BioFactors 44(2):158–167

    CAS  PubMed  Google Scholar 

  92. Liu J, Zhu H, Li B, Robinson SC, Lee C, O’Connell JS et al (2020) Lactoferrin reduces necrotizing enterocolitis severity by upregulating intestinal epithelial proliferation. Eur J Pediatr Surg 30(1):90–95

    CAS  PubMed  Google Scholar 

  93. Sodhi CP, Wipf P, Yamaguchi Y, Fulton WB, Kovler M, Niño DF et al (2021) The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr Res 89(1):91–101

    CAS  PubMed  Google Scholar 

  94. Wu RY, Li B, Koike Y, Määttänen P, Miyake H, Cadete M et al (2019) Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res 63(3):e1800658

    PubMed  Google Scholar 

  95. Lucas A, Cole TJ (1990) Breast milk and neonatal necrotising enterocolitis. Lancet 336(8730):1519–1523

    CAS  PubMed  Google Scholar 

  96. He Y, Liu S, Kling DE, Leone S, Lawlor NT, Huang Y et al (2016) The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65(1):33–46

    CAS  PubMed  Google Scholar 

  97. Newburg DS, Ko JS, Leone S, Nanthakumar NN (2016) Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3’-, 4-, and 6’-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. J Nutr 146(2):358–367

    CAS  PubMed  Google Scholar 

  98. He Y, Liu S, Leone S, Newburg DS (2014) Human colostrum oligosaccharides modulate major immunologic pathways of immature human intestine. Mucosal Immunol 7(6):1326–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Musilova S, Rada V, Vlkova E, Bunesova V (2014) Beneficial effects of human milk oligosaccharides on gut microbiota. Benef Microbes 5(3):273–283

    CAS  PubMed  Google Scholar 

  100. Manthey CF, Autran CA, Eckmann L, Bode L (2014) Human milk oligosaccharides protect against enteropathogenic Escherichia coli attachment in vitro and EPEC colonization in suckling mice. J Pediatr Gastroenterol Nutr 58(2):165–168

    PubMed  PubMed Central  Google Scholar 

  101. Lin AE, Autran CA, Espanola SD, Bode L, Nizet V (2014) Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J Infect Dis 209(3):389–398

    CAS  PubMed  Google Scholar 

  102. Autran CA, Kellman BP, Kim JH, Asztalos E, Blood AB, Spence ECH et al (2018) Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants. Gut 67(6):1064–1070

    CAS  PubMed  Google Scholar 

  103. Autran CA, Schoterman MHC, Jantscher-Krenn E, Kamerling JP, Bode L (2016) Sialylated galacto-oligosaccharides and 2’-fucosyllactose reduce necrotising enterocolitis in neonatal rats. Br J Nutr 116(2):294–299

    CAS  PubMed  Google Scholar 

  104. Jantscher-Krenn E, Zherebtsov M, Nissan C, Goth K, Guner YS, Naidu N et al (2012) The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut 61(10):1417–1425

    CAS  PubMed  Google Scholar 

  105. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22(9):1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang W, He-Yang J, Tu W, Zhou X (2021) Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats. Nutr Metab (Lond) 18(1):5

    CAS  PubMed  Google Scholar 

  107. Li B, Wu RY, Horne RG, Ahmed A, Lee D, Robinson SC et al (2020) Human milk oligosaccharides protect against necrotizing enterocolitis by activating intestinal cell differentiation. Mol Nutr Food Res 64(21):e2000519

    PubMed  Google Scholar 

  108. Wang C, Zhang M, Guo H, Yan J, Liu F, Chen J et al (2019) Human milk oligosaccharides protect against necrotizing enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells. Mol Nutr Food Res 63(18):e1900262

    PubMed  Google Scholar 

  109. He-Yang J, Zhang W, Liu J, Xue P, Zhou X (2020) Human breast milk oligosaccharides attenuate necrotizing enterocolitis in rats by suppressing mast cell accumulation, DPPI activity and TLR4 expression in ileum tissue, and regulating mitochondrial damage of Caco-2 cells. Int Immunopharmacol 88:106881

    CAS  PubMed  Google Scholar 

  110. Torregrosa Paredes P, Gutzeit C, Johansson S, Admyre C, Stenius F, Alm J et al (2014) Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 69(4):463–471

    CAS  PubMed  Google Scholar 

  111. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    PubMed  Google Scholar 

  112. Whiteside TL (2021) The role of tumor-derived exosomes (TEX) in shaping anti-tumor immune competence. Cells 10(11):3054

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hock A, Miyake H, Li B, Lee C, Ermini L, Koike Y et al (2017) Breast milk-derived exosomes promote intestinal epithelial cell growth. J Pediatr Surg 52(5):755–759

    PubMed  Google Scholar 

  114. Dong P, Zhang Y, Yan DY, Wang Y, Xu X, Zhao YC et al (2020) Protective effects of human milk-derived exosomes on intestinal stem cells damaged by oxidative stress. Cell Transplant 29:963689720912690

    PubMed  Google Scholar 

  115. Martin C, Patel M, Williams S, Arora H, Brawner K, Sims B (2018) Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells. Innate Immun 24(5):278–284

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gao R, Zhang R, Qian T, Peng X, He W, Zheng S et al (2019) A comparison of exosomes derived from different periods breast milk on protecting against intestinal organoid injury. Pediatr Surg Int 35(12):1363–1368

    PubMed  Google Scholar 

  117. Xie MY, Hou LJ, Sun JJ, Zeng B, Xi QY, Luo JY et al (2019) Porcine Milk Exosome MiRNAs Attenuate LPS-Induced Apoptosis through Inhibiting TLR4/NF-κB and p53 Pathways in Intestinal Epithelial Cells. J Agric Food Chem 67(34):9477–9491

    CAS  PubMed  Google Scholar 

  118. Li B, Hock A, Wu RY, Minich A, Botts SR, Lee C et al (2019) Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLoS ONE 14(1):e0211431

    CAS  PubMed  PubMed Central  Google Scholar 

  119. He Y, Cao L, Yu J (2018) Prophylactic lactoferrin for preventing late-onset sepsis and necrotizing enterocolitis in preterm infants: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 97(35):e11976

    CAS  PubMed  Google Scholar 

  120. Nguyen DN, Jiang P, Stensballe A, Bendixen E, Sangild PT, Chatterton DEW (2016) Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine. J Proteomics 29(139):95–102

    Google Scholar 

  121. Queiroz VAO de, Assis AMO, R Júnior H da C. Protective effect of human lactoferrin in the gastrointestinal tract. Rev Paul Pediatr. 2013;31(1):90–5.

  122. Nguyen DN, Li Y, Sangild PT, Bering SB, Chatterton DEW (2014) Effects of bovine lactoferrin on the immature porcine intestine. Br J Nutr 111(2):321–331

    CAS  PubMed  Google Scholar 

  123. Reznikov EA, Comstock SS, Yi C, Contractor N, Donovan SM (2014) Dietary bovine lactoferrin increases intestinal cell proliferation in neonatal piglets. J Nutr 144(9):1401–1408

    CAS  PubMed  Google Scholar 

  124. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H et al (2009) Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA 302(13):1421–1428

    CAS  PubMed  Google Scholar 

  125. Pammi M, Suresh G (2017) Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 6:CD007137

    PubMed  Google Scholar 

  126. Manzoni P, Meyer M, Stolfi I, Rinaldi M, Cattani S, Pugni L et al (2014) Bovine lactoferrin supplementation for prevention of necrotizing enterocolitis in very-low-birth-weight neonates: a randomized clinical trial. Early Hum Dev 90(Suppl 1):S60-65

    CAS  PubMed  Google Scholar 

  127. Meyer MP, Alexander T (2017) Reduction in necrotizing enterocolitis and improved outcomes in preterm infants following routine supplementation with Lactobacillus GG in combination with bovine lactoferrin. J Neonatal Perinatal Med 10(3):249–255

    PubMed  Google Scholar 

  128. Serce Pehlevan O, Benzer D, Gursoy T, Aktas Cetin E, Karatekin G, OvaliMD F (2020) Cytokine responses to symbiotic and lactoferrin combination in very low birth weight neonates: a randomized control trial. Arch Argent Pediatr 118(1):e8-15

    PubMed  Google Scholar 

  129. Griffiths J, Jenkins P, Vargova M, Bowler U, Juszczak E, King A et al (2018) Enteral lactoferrin to prevent infection for very preterm infants: the ELFIN RCT. Health Technol Assess 22(74):1–60

    PubMed  PubMed Central  Google Scholar 

  130. Gao Y, Hou L, Lu C, Wang Q, Pan B, Wang Q et al (2020) Enteral lactoferrin supplementation for preventing sepsis and necrotizing enterocolitis in preterm infants: a meta-analysis with trial sequential analysis of randomized controlled trials. Front Pharmacol 11:1186

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu J, Li Y, Feng Y, Pan L, Xie Z, Yan Z et al (2019) Patterned progression of gut microbiota associated with necrotizing enterocolitis and late onset sepsis in preterm infants: a prospective study in a Chinese neonatal intensive care unit. PeerJ 7:e7310

    PubMed  PubMed Central  Google Scholar 

  132. Thomas H (2017) IBD: FMT induces clinical remission in ulcerative colitis. Nat Rev Gastroenterol Hepatol 14(4):196

    PubMed  Google Scholar 

  133. Woodworth MH, Hayden MK, Young VB, Kwon JH (2019) The role of fecal microbiota transplantation in reducing intestinal colonization with antibiotic-resistant organisms: the current landscape and future directions. Open Forum Infect Dis 6(7):ofz288

    PubMed  PubMed Central  Google Scholar 

  134. Gurram B, Sue PK (2019) Fecal microbiota transplantation in children: current concepts. Curr Opin Pediatr 31(5):623–629

    PubMed  Google Scholar 

  135. Liu J, Miyake H, Zhu H, Li B, Alganabi M, Lee C et al (2020) Fecal microbiota transplantation by enema reduces intestinal injury in experimental necrotizing enterocolitis. J Pediatr Surg 55(6):1094–1098

    PubMed  Google Scholar 

  136. Prado C, Michels M, Ávila P, Burger H, Milioli MVM, Dal-Pizzol F (2019) The protective effects of fecal microbiota transplantation in an experimental model of necrotizing enterocolitis. J Pediatr Surg 54(8):1578–1583

    PubMed  Google Scholar 

  137. Li X, Li X, Shang Q, Gao Z, Hao F, Guo H et al (2017) Fecal microbiota transplantation (FMT) could reverse the severity of experimental necrotizing enterocolitis (NEC) via oxidative stress modulation. Free Radic Biol Med 108:32–43

    CAS  PubMed  Google Scholar 

  138. Lin H, Guo Q, Ran Y, Lin L, Chen P, He J et al (2021) Multiomics study reveals enterococcus and subdoligranulum are beneficial to necrotizing enterocolitis. Front Microbiol 12:752102

    PubMed  PubMed Central  Google Scholar 

  139. Hinchliffe T, Pauline ML, Wizzard PR, Jovel J, Nation PN, Wales PW et al (2022) The effect of fecal microbial transplant on intestinal microbial composition in short-bowel neonatal piglets. JPEN J Parenter Enteral Nutr 46(6):1393–1403

    PubMed  Google Scholar 

  140. Hui Y, Vestergaard G, Deng L, Kot WP, Thymann T, Brunse A et al (2022) Donor-dependent fecal microbiota transplantation efficacy against necrotizing enterocolitis in preterm pigs. NPJ Biofilms Microbiomes 8(1):48

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Ward DV, Scholz M, Zolfo M, Taft DH, Schibler KR, Tett A et al (2016) Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell Rep 14(12):2912–2924

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Brunse A, Martin L, Rasmussen TS, Christensen L, Skovsted Cilieborg M, Wiese M et al (2019) Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs. ISME J 13(3):720–733

    CAS  PubMed  Google Scholar 

  143. Brunse A, Deng L, Pan X, Hui Y, Castro-Mejía JL, Kot W et al (2022) Fecal filtrate transplantation protects against necrotizing enterocolitis. ISME J 16(3):686–694

    CAS  PubMed  Google Scholar 

  144. Prado C, Abatti MR, Michels M, Córneo E, Cucker L, Borges H et al (2022) Comparative effects of fresh and sterile fecal microbiota transplantation in an experimental animal model of necrotizing enterocolitis. J Pediatr Surg 57(9):183–191

    PubMed  Google Scholar 

  145. Niño DF, Sodhi CP, Hackam DJ (2016) Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 13(10):590–600

    PubMed  PubMed Central  Google Scholar 

  146. Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R et al (2006) The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177(5):3273–3282

    CAS  PubMed  Google Scholar 

  147. Sampath V, Menden H, Helbling D, Li K, Gastonguay A, Ramchandran R et al (2015) SIGIRR genetic variants in premature infants with necrotizing enterocolitis. Pediatrics 135(6):e1530-1534

    PubMed  PubMed Central  Google Scholar 

  148. Neal MD, Sodhi CP, Jia H, Dyer M, Egan CE, Yazji I et al (2012) Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J Biol Chem 287(44):37296–37308

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sodhi CP, Neal MD, Siggers R, Sho S, Ma C, Branca MF et al (2012) Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143(3):708-718.e5

    CAS  PubMed  Google Scholar 

  150. Qureshi FG, Leaphart C, Cetin S, Li J, Grishin A, Watkins S et al (2005) Increased expression and function of integrins in enterocytes by endotoxin impairs epithelial restitution. Gastroenterology 128(4):1012–1022

    CAS  PubMed  Google Scholar 

  151. Werts AD, Fulton WB, Ladd MR, Saad-Eldin A, Chen YX, Kovler ML et al (2020) A novel role for necroptosis in the pathogenesis of necrotizing enterocolitis. Cell Mol Gastroenterol Hepatol 9(3):403–423

    PubMed  Google Scholar 

  152. Wipf P, Eyer BR, Yamaguchi Y, Zhang F, Neal MD, Sodhi CP et al (2015) Synthesis of anti-inflammatory α-and β-linked acetamidopyranosides as inhibitors of toll-like receptor 4 (TLR4). Tetrahedron Lett 56(23):3097–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Richardson WM, Sodhi CP, Russo A, Siggers RH, Afrazi A, Gribar SC et al (2010) Nucleotide-binding oligomerization domain-2 inhibits toll-like receptor-4 signaling in the intestinal epithelium. Gastroenterology 139(3):904–917

    CAS  PubMed  Google Scholar 

  154. Huang K, Mukherjee S, DesMarais V, Albanese JM, Rafti E, Draghi Ii A et al (2018) Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res 83(5):1031–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cao H, Guo D (2021) Association of high-mobility group box 1 (HMGB1) gene polymorphisms with susceptibility and better survival prognosis in chinese han neonatal necrotizing enterocolitis. Med Sci Monit 31(27):e930015

    Google Scholar 

  156. Dai S, Sodhi C, Cetin S, Richardson W, Branca M, Neal MD et al (2010) Extracellular high mobility group box-1 (HMGB1) inhibits enterocyte migration via activation of Toll-like receptor-4 and increased cell-matrix adhesiveness. J Biol Chem 285(7):4995–5002

    CAS  PubMed  Google Scholar 

  157. Ye C, Zhang Y, Ding X, Guo C (2021) High-mobility group box-1 is critical in the pathogenesis of mouse experimental necrotizing enterocolitis. J Interferon Cytokine Res 41(9):319–328

    CAS  PubMed  Google Scholar 

  158. Yu R, Jiang S, Tao Y, Li P, Yin J, Zhou Q (2019) Inhibition of HMGB1 improves necrotizing enterocolitis by inhibiting NLRP3 via TLR4 and NF-κB signaling pathways. J Cell Physiol 234(8):13431–13438

    CAS  PubMed  Google Scholar 

  159. Hou Y, Lu X, Zhang Y (2018) IRAK inhibitor protects the intestinal tract of necrotizing enterocolitis by inhibiting the toll-like receptor (TLR) inflammatory signaling pathway in rats. Med Sci Monit 22(24):3366–3373

    Google Scholar 

Download references

Acknowledgements

This work was also supported by the Canadian Institutes of Health Research (CIHR) Foundation Grant 353857 (recipient: Agostino Pierro) and the Restracomp Scholarship (recipient: Niloofar Ganji).

Author information

Authors and Affiliations

Authors

Contributions

Niloofar Ganji, Bo Li, and Carol Lee were involved in writing the original draft. Agostino Pierro was involved in conceptualization, supervision, writing and review.

Corresponding author

Correspondence to Agostino Pierro.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganji, N., Li, B., Lee, C. et al. Necrotizing enterocolitis: recent advances in treatment with translational potential. Pediatr Surg Int 39, 205 (2023). https://doi.org/10.1007/s00383-023-05476-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-023-05476-0

Keywords

Navigation