Skip to main content
Log in

Neurodevelopmental outcomes after neonatal surgery

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Children who require surgery in the newborn period are at risk for long-term neurodevelopmental impairment (NDI). There is growing evidence that surgery during this critical window of neurodevelopment gives rise to an increased risk of brain injury, predisposing to neurodevelopmental challenges including motor delays, learning disabilities, executive function impairments, and behavioral disorders. These impairments can have a significant impact on the quality of life of these children and their families. This review explores the current literature surrounding the effect of neonatal surgery on neurodevelopment, as well as the spectrum of proposed mechanisms that may impact neurodevelopmental outcomes. The goal is to identify modifiable risk factors and patients who may benefit from close neurodevelopmental follow-up and early referral to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No primary data produced as part of this study, and therefore no data available to access.

References:

  1. Rowe MI, Rowe SA (2000) The last fifty years of neonatal surgical management. Am J Surg 180:345–352. https://doi.org/10.1016/S0002-9610(00)00545-6

    Article  CAS  PubMed  Google Scholar 

  2. Laing S, Walker K, Ungerer J et al (2011) Early development of children with major birth defects requiring newborn surgery: development of children with birth defects. J Paediatr Child Health 47:140–147. https://doi.org/10.1111/j.1440-1754.2010.01902.x

    Article  PubMed  Google Scholar 

  3. Stolwijk LJ, Lemmers PM, Harmsen M et al (2016) Neurodevelopmental outcomes after neonatal surgery for major noncardiac anomalies. Pediatrics 137:e20151728. https://doi.org/10.1542/peds.2015-1728

    Article  PubMed  Google Scholar 

  4. Read J, Ridout D, Johnson S et al (2022) Postoperative morbidities with infant cardiac surgery and toddlers’ neurodevelopment. Arch Dis Child 107:922–928. https://doi.org/10.1136/archdischild-2021-322756

    Article  Google Scholar 

  5. Ballweg JA, Wernovsky G, Gaynor JW (2007) Neurodevelopmental outcomes following congenital heart surgery. Pediatr Cardiol 28:126–133. https://doi.org/10.1007/s00246-006-1450-9

    Article  PubMed  Google Scholar 

  6. Gaynor JW, Stopp C, Wypij D et al (2015) Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 135:816–825. https://doi.org/10.1542/peds.2014-3825

    Article  PubMed  PubMed Central  Google Scholar 

  7. Keunen K, Sperna Weiland NH, Bakker BS et al (2022) Impact of surgery and anesthesia during early brain development: a perfect storm. Pediatr Anesth 32:697–705. https://doi.org/10.1111/pan.14433

    Article  Google Scholar 

  8. Marchesini V, Disma N (2019) Anaesthetic neuroprotection in children: does it exist or is it all just bad? Curr Opin Anaesthesiol 32:363–369. https://doi.org/10.1097/ACO.0000000000000723

    Article  PubMed  Google Scholar 

  9. Walker K, Holland AJ, Winlaw D et al (2006) Neurodevelopmental outcomes and surgery in neonates. J Paediatr Child Health 42:749–751. https://doi.org/10.1111/j.1440-1754.2006.00969.x

    Article  PubMed  Google Scholar 

  10. Walker SM, O’Reilly H, Beckmann J, Marlow N (2018) Conditioned pain modulation identifies altered sensitivity in extremely preterm young adult males and females. Br J Anaesth 121:636–646. https://doi.org/10.1016/j.bja.2018.05.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. World Health Organization Congenital anomalies (2022) https://www.who.int/health-topics/congenital-anomalies#tab=tab_1. Accessed 6 Jul 2022

  12. World Health Organization (2022) Birth defects. https://www.who.int/news-room/fact-sheets/detail/birth-defects. Accessed 6 Jul 2022

  13. Mathews TJ, MacDorman MF, Menacker F (2015) Infant mortality statistics from the 1999 period: linked birth/infant death data set. National vital statistics reports 64

  14. Centers for Disease Control and Prevention (2022) Data and statistics on congenital heart defects. https://www.cdc.gov/ncbddd/heartdefects/data.html#References. Accessed 7 Jul 2022

  15. Krishnamurthy G, Ratner V, Bacha E (2013) Neonatal Cardiac care, a perspective. Semin Thorac Cardiovasc Surg 16:21–31. https://doi.org/10.1053/j.pcsu.2013.01.007

    Article  Google Scholar 

  16. Oster ME, Lee KA, Honein MA et al (2013) Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 131:e1502–e1508. https://doi.org/10.1542/peds.2012-3435

    Article  PubMed  Google Scholar 

  17. Lopez KN, Morris SA, Sexson Tejtel SK et al (2020) US mortality attributable to congenital heart disease across the lifespan from 1999 through 2017 exposes persistent racial/ethnic disparities. Circulation 142:1132–1147. https://doi.org/10.1161/CIRCULATIONAHA.120.046822

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khairy P, Ionescu-Ittu R, Mackie AS et al (2010) Changing mortality in congenital heart disease. J Am Coll Cardiol 56:1149–1157. https://doi.org/10.1016/j.jacc.2010.03.085

    Article  PubMed  Google Scholar 

  19. The Canadian pediatric surgery network (2020) CAPSNet 2019 Annual report. http://www.capsnetwork.org/portal/Portals/0/CAPSNet/Annual%20Reports/CAPSNet%20AR%202019.pdf. Accessed 7 Jul 2022

  20. Castilla EE, Mastroiacovo P, Orioli IM (2008) Gastroschisis: international epidemiology and public health perspectives. Am J Med Genet 148C:162–179. https://doi.org/10.1002/ajmg.c.30181

    Article  PubMed  Google Scholar 

  21. Politis MD, Bermejo-Sánchez E, Canfield MA et al (2021) Prevalence and mortality in children with congenital diaphragmatic hernia: a multicountry study. Ann Epidemiol 56:61-69.e3. https://doi.org/10.1016/j.annepidem.2020.11.007

    Article  PubMed  Google Scholar 

  22. Youssef F, Cheong LHA, Emil S (2016) Gastroschisis outcomes in North America: a comparison of Canada and the United States. J Pediatr Surg 51:891–895. https://doi.org/10.1016/j.jpedsurg.2016.02.046

    Article  PubMed  Google Scholar 

  23. Stoll BJ, Hansen NI, Bell EF et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314:1039–1051. https://doi.org/10.1001/jama.2015.10244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holman RC, Stoll BJ, Curns AT et al (2006) Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol 20:498–506. https://doi.org/10.1111/j.1365-3016.2006.00756.x

    Article  PubMed  Google Scholar 

  25. Gunn JK, Beca J, Hunt RW et al (2016) Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy. Arch Dis Child 101:1010–1016. https://doi.org/10.1136/archdischild-2015-309449

    Article  PubMed  Google Scholar 

  26. Ringle ML, Wernovsky G (2016) Functional, quality of life, and neurodevelopmental outcomes after congenital cardiac surgery. Semin Perinatol 40:556–570. https://doi.org/10.1053/j.semperi.2016.09.008

    Article  PubMed  Google Scholar 

  27. Walker K, Badawi N, Halliday R et al (2012) Early developmental outcomes following major noncardiac and cardiac surgery in term infants: a population-based study. J Pediatr 161:748-752.e1. https://doi.org/10.1016/j.jpeds.2012.03.044

    Article  PubMed  Google Scholar 

  28. Burns J, Varughese R, Ganigara M et al (2021) Neurodevelopmental outcomes in congenital heart disease through the lens of single ventricle patients. Curr Opin Pediatr 33:535–542. https://doi.org/10.1097/MOP.0000000000001052

    Article  PubMed  Google Scholar 

  29. Licht DJ, Shera DM, Clancy RR et al (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529–537. https://doi.org/10.1016/j.jtcvs.2008.10.025

    Article  PubMed  PubMed Central  Google Scholar 

  30. Donofrio MT, Bremer YA, Schieken RM et al (2003) Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol 24:436–443. https://doi.org/10.1007/s00246-002-0404-0

    Article  CAS  PubMed  Google Scholar 

  31. Bellinger DC, Jonas RA, Rappaport LA et al (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332:549–555. https://doi.org/10.1056/NEJM199503023320901

    Article  CAS  PubMed  Google Scholar 

  32. Sterling LH, Liu A, Ganni E et al (2021) Neurocognitive disorders amongst patients with congenital heart disease undergoing procedures in childhood. Int J Cardiol 336:47–53. https://doi.org/10.1016/j.ijcard.2021.05.001

    Article  PubMed  Google Scholar 

  33. Hicks MS, Sauve RS, Robertson CMT et al (2016) Early childhood language outcomes after arterial switch operation: a prospective cohort study. Springerplus 5:1681. https://doi.org/10.1186/s40064-016-3344-5

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheung P-Y, Chui N, Joffe AR et al (2005) Postoperative lactate concentrations predict the outcome of infants aged 6 weeks or less after intracardiac surgery: a cohort follow-up to 18 months. J Thorac Cardiovasc Surg 130:837–843. https://doi.org/10.1016/j.jtcvs.2005.04.029

    Article  PubMed  Google Scholar 

  35. Sistino J (2013) Attention deficit/hyperactivity disorder after neonatal surgery: review of the pathophysiology and risk factors. Perfusion 28:484–494. https://doi.org/10.1177/0267659113499598

    Article  CAS  PubMed  Google Scholar 

  36. Czobor NR, Ocsovszky Z, Roth G et al (2021) ADHD symptomatology of children with congenital heart disease 10 years after cardiac surgery: the role of age at operation. BMC Psychiatr 21:316. https://doi.org/10.1186/s12888-021-03324-w

    Article  Google Scholar 

  37. Beca J, Gunn JK, Coleman L et al (2013) New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 127:971–979. https://doi.org/10.1161/CIRCULATIONAHA.112.001089

    Article  PubMed  Google Scholar 

  38. Stolwijk LJ, Keunen K, de Vries LS et al (2017) Neonatal surgery for noncardiac congenital anomalies: neonates at risk of brain injury. J Pediatr 182:335-341.e1. https://doi.org/10.1016/j.jpeds.2016.11.080

    Article  PubMed  Google Scholar 

  39. Moran MM, Gunn-Charlton JK, Walsh JM et al (2019) Associations of neonatal noncardiac surgery with brain structure and neurodevelopment: a prospective case-control study. J Pediatr 212:93-101.e2. https://doi.org/10.1016/j.jpeds.2019.05.050

    Article  PubMed  Google Scholar 

  40. Nestor KA, Zeidan M, Boncore E et al (2017) Neurodevelopmental outcomes in infants undergoing general anesthesia. J Pediatr Surg 52:895–900. https://doi.org/10.1016/j.jpedsurg.2017.03.008

    Article  PubMed  Google Scholar 

  41. Grabowski J, Goldin A, Arthur LG et al (2021) The effects of early anesthesia on neurodevelopment: a systematic review. J Pediatr Surg 56:851–861. https://doi.org/10.1016/j.jpedsurg.2021.01.002

    Article  PubMed  Google Scholar 

  42. Sanders RD, Hassell J, Davidson AJ et al (2013) Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth 110:i53–i72. https://doi.org/10.1093/bja/aet054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ing CH, DiMaggio CJ, Whitehouse AJO et al (2014) Neurodevelopmental outcomes after initial childhood anesthetic exposure between ages 3 and 10 years. J Neurosurg Anesthesiol 26:377–386. https://doi.org/10.1097/ANA.0000000000000121

    Article  PubMed  Google Scholar 

  44. Ing C, DiMaggio C, Whitehouse A et al (2012) Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 130:e476-485. https://doi.org/10.1542/peds.2011-3822

    Article  PubMed  Google Scholar 

  45. Batta V, Rao S, Wagh D et al (2020) Early neurodevelopmental outcomes of congenital gastrointestinal surgical conditions: a single-centre retrospective study. BMJ Paediatr Open 4:e000736. https://doi.org/10.1136/bmjpo-2020-000736

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804. https://doi.org/10.1097/01.anes.0000344728.34332.5d

    Article  PubMed  Google Scholar 

  47. Sprung J, Flick RP, Wilder RT et al (2009) Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology 111:302–310. https://doi.org/10.1097/ALN.0b013e3181adf481

    Article  PubMed  Google Scholar 

  48. Birajdar S, Rao S, McMichael J (2017) Neurodevelopmental outcomes of neonates undergoing surgery under general anesthesia for malrotation of intestines. Early Human Dev 109:32–36. https://doi.org/10.1016/j.earlhumdev.2017.04.003

    Article  Google Scholar 

  49. McCann ME, de Graaff JC, Dorris L et al (2019) Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. The Lancet 393:664–677. https://doi.org/10.1016/S0140-6736(18)32485-1

    Article  Google Scholar 

  50. Arana Håkanson C, Fredriksson F, Engstrand Lilja H (2020) Attention deficit hyperactivity disorder and educational level in adolescent and adult individuals after anesthesia and abdominal surgery during infancy. PLoS ONE 15:e0240891. https://doi.org/10.1371/journal.pone.0240891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cowan M, Petri WA (2018) Microglia: immune regulators of neurodevelopment. Front Immunol 9:2576. https://doi.org/10.3389/fimmu.2018.02576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Margraf A, Ludwig N, Zarbock A, Rossaint J (2020) Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg 131:1693–1707. https://doi.org/10.1213/ANE.0000000000005175

    Article  PubMed  Google Scholar 

  53. Filiano AJ, Gadani SP, Kipnis J (2015) Interactions of innate and adaptive immunity in brain development and function. Brain Res 1617:18–27. https://doi.org/10.1016/j.brainres.2014.07.050

    Article  CAS  PubMed  Google Scholar 

  54. Pavcnik-Arnol M, Bonac B, Groselj-Grenc M, Derganc M (2010) Changes in serum procalcitonin, interleukin 6, interleukin 8 and C-reactive protein in neonates after surgery. Eur J Pediatr Surg 20:262–266. https://doi.org/10.1055/s-0030-1253358

    Article  CAS  PubMed  Google Scholar 

  55. Nist MD, Pickler RH (2019) An integrative review of cytokine/chemokine predictors of neurodevelopment in preterm infants. Biol Res Nurs 21:366–376. https://doi.org/10.1177/1099800419852766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gessler P, Schmitt B, Prètre R, Latal B (2009) Inflammatory response and neurodevelopmental outcome after open-heart surgery in children. Pediatr Cardiol 30:301–305. https://doi.org/10.1007/s00246-008-9354-5

    Article  PubMed  Google Scholar 

  57. Lodha A, Asztalos E, Moore A (2010) Cytokine levels in neonatal necrotizing enterocolitis and long-term growth and neurodevelopment. Acta Paediatr 99:338–343. https://doi.org/10.1111/j.1651-2227.2009.01600.x

    Article  CAS  PubMed  Google Scholar 

  58. Rees CM, Pierro A, Eaton S (2007) Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Archiv Dis Child Fetal Neonatal Ed 92:F193–F198. https://doi.org/10.1136/adc.2006.099929

    Article  Google Scholar 

  59. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744. https://doi.org/10.1038/35094583

    Article  CAS  PubMed  Google Scholar 

  60. Hatch DJ (1987) Analgesia in the neonate. BMJ 294:920–920. https://doi.org/10.1136/bmj.294.6577.920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anand KJS, Hickey PR (1987) Pain and its effects in the human neonate and fetus. N Engl J Med 317:1321–1329. https://doi.org/10.1056/NEJM198711193172105

    Article  CAS  PubMed  Google Scholar 

  62. Owens ME, Todt EH (1984) Pain in infancy: neonatal reaction to a heel lance. Pain 20:77–86. https://doi.org/10.1016/0304-3959(84)90813-3

    Article  PubMed  Google Scholar 

  63. Slater R (2006) Cortical pain responses in human infants. J Neurosci 26:3662–3666. https://doi.org/10.1523/JNEUROSCI.0348-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schneider J, Duerden EG, Guo T et al (2018) Procedural pain and oral glucose in preterm neonates: brain development and sex-specific effects. Pain 159:515–525. https://doi.org/10.1097/j.pain.0000000000001123

    Article  CAS  PubMed  Google Scholar 

  65. Grunau RE, Whitfield MF, Petrie-Thomas J et al (2009) Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain 143:138–146. https://doi.org/10.1016/j.pain.2009.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  66. Anand KJS, Coskun V, Thrivikraman KV et al (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 66:627–637. https://doi.org/10.1016/S0031-9384(98)00338-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dührsen L, Simons SHP, Dzietko M et al (2013) Effects of repetitive exposure to pain and morphine treatment on the neonatal rat brain. Neonatology 103:35–43. https://doi.org/10.1159/000341769

    Article  CAS  PubMed  Google Scholar 

  68. Williams MD, Lascelles BDX (2020) Early neonatal pain—a review of clinical and experimental implications on painful conditions later in life. Front Pediatr 8:30. https://doi.org/10.3389/fped.2020.00030

    Article  PubMed  PubMed Central  Google Scholar 

  69. Deindl P, Unterasinger L, Kappler G et al (2013) Successful implementation of a neonatal pain and sedation protocol at 2 NICUs. Pediatrics 132:e211–e218. https://doi.org/10.1542/peds.2012-2346

    Article  PubMed  Google Scholar 

  70. Anand K, Hall RW, Desai N et al (2004) Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. The Lancet 363:1673–1682. https://doi.org/10.1016/S0140-6736(04)16251-X

    Article  CAS  Google Scholar 

  71. Puia-Dumitrescu M, Comstock BA, Li S et al (2021) Assessment of 2-Year neurodevelopmental outcomes in extremely preterm infants receiving opioids and benzodiazepines. JAMA Netw Open 4:e2115998. https://doi.org/10.1001/jamanetworkopen.2021.15998

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manuscript topic conceived by B.T.K. E.L. and B.T.K. wrote the manuscript. E.L. performed the literature review.

Corresponding author

Correspondence to Brian T. Kalish.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, E., Kalish, B.T. Neurodevelopmental outcomes after neonatal surgery. Pediatr Surg Int 39, 22 (2023). https://doi.org/10.1007/s00383-022-05285-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-022-05285-x

Keywords

Navigation