Skip to main content

Advertisement

Log in

The chest wall gender divide: females have better cardiopulmonary function and exercise tolerance despite worse deformity in pectus excavatum

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Pectus excavatum (PE) is a chest wall deformity of variable severity and symptomatology. Existing female-specific literature highlights breast asymmetry and cosmetic reconstruction. We sought to evaluate gender differences in cardiopulmonary function.

Methods

Cardiac MRIs, pulmonary function tests (PFTs), and cardiopulmonary exercise tests (CPETs) were reviewed in 345 patients undergoing preoperative evaluation for PE. Regression modeling was used to evaluate associations between gender and clinical endpoints of cardiopulmonary function.

Results

Mean age was 15.2 years, 19% were female, 98% were white. Pectus indices included median Haller Index (HI) of 4.8, mean depression index (DI) of 0.63, correction index (CI) of 33.6%, and Cardiac Compression Index (CCI) of 2.79. Cardiac assessment revealed decreased right and left ventricular ejection fraction (RVEF, LVEF) in 16% and 22% of patients, respectively. PFTs and CPETs were abnormal in ~ 30% of patients. While females had deeper PE deformities—represented by higher pectus indices—they had superior function with higher RVEF, LVEF Z-scores, FEV1, VO2 max, O2 pulse, work, and breathing reserve (p < 0.05).

Conclusion

Despite worse PE deformity and symptomatology, females had a better cardiopulmonary function and exercise tolerance than males. Further research is needed to assess the precise mechanisms of this phenomenon and postoperative outcomes in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdullah F, Harris J (2016) Pectus excavatum: more than a matter of aesthetics. Pediatr Ann 45:e403–e406. https://doi.org/10.3928/19382359-20161007-01

    Article  PubMed  Google Scholar 

  2. Schwabegger A (2018) Deformities of the thoracic wall: don’t forget the plastic surgeon. Eur J Pediatr Surg 28:361–368. https://doi.org/10.1055/s-0038-1668129

    Article  PubMed  Google Scholar 

  3. Rha EY, Kim J-M, Yoo G, Jeong JY, Hwang DK, Kim KJ (2016) Is breast asymmetry caused by volume differences in women with pectus excavatum? J Plast Reconstr Aesthetic Surg 69:470–474. https://doi.org/10.1016/j.bjps.2015.12.003

    Article  Google Scholar 

  4. Moscona RA, Fodor L (2011) How to perform breast augmentation safely for a pectus excavatum patient. Aesthetic Plast Surg 35:198–202. https://doi.org/10.1007/s00266-010-9583-x

    Article  PubMed  Google Scholar 

  5. Abu-Tair T, Turial S, Hess M, Wiethoff CM, Staatz G, Lollert A et al (2018) Impact of pectus excavatum on cardiopulmonary function. Ann Thorac Surg 105:455–460. https://doi.org/10.1016/j.athoracsur.2017.09.037

    Article  PubMed  Google Scholar 

  6. Kelly RE, Mellins RB, Shamberger RC, Mitchell KK, Lawson ML, Oldham KT et al (2013) Multicenter study of pectus excavatum, final report: complications, static/exercise pulmonary function, and anatomic outcomes. J Am Coll 217:1080–1089. https://doi.org/10.1016/j.jamcollsurg.2013.06.019

    Article  Google Scholar 

  7. Maagaard M, Tang M, Ringgaard S, Nielsen HHM, Frøkiær J, Haubuf M et al (2013) Normalized cardiopulmonary exercise function in patients with pectus excavatum three years after operation. Ann Thorac Surg 96:272–278. https://doi.org/10.1016/j.athoracsur.2013.03.034

    Article  PubMed  Google Scholar 

  8. Birkemeier KL, Podberesky DJ, Salisbury S, Serai S (2012) Limited, fast magnetic resonance imaging as an alternative for preoperative evaluation of pectus excavatum. J Thorac Imaging 27:393–397. https://doi.org/10.1097/RTI.0b013e31822da1b6

    Article  PubMed  Google Scholar 

  9. Haller JA, Kramer SS, Lietman SA (1987) Use of CT scans in selection of patients for pectus excavatum surgery: a preliminary report. J Pediatr Surg 22:904–906. https://doi.org/10.1016/S0022-3468(87)80585-7

    Article  PubMed  Google Scholar 

  10. Fagelman KM, Methratta S, Cilley RE, Wilson MZ, Hollenbeak CS (2015) The Depression Index: an objective measure of the severity of pectus excavatum based on vertebral diameter, a morphometric correlate to patient size. J Pediatr Surg 50:1130–1133. https://doi.org/10.1016/j.jpedsurg.2014.11.043

    Article  PubMed  Google Scholar 

  11. Peter SD, Juang D, Garey CL, Laituri CA, Ostlie DJ, Sharp RJ et al (2011) A novel measure for pectus excavatum: the correction index. J Pediatr Surg 46:2270–2273. https://doi.org/10.1016/j.jpedsurg.2011.09.009

    Article  Google Scholar 

  12. Kim M, Lee KY, Park HJ, Kim H-Y, Kang E-Y, Oh YW et al (2009) Development of new cardiac deformity indexes for pectus excavatum on computed tomography: feasibility for pre- and post-operative evaluation. Yonsei Med J 50:385. https://doi.org/10.3349/ymj.2009.50.3.385

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ruppel GL, Enright PL (2012) Pulmonary function testing. Respir Care 57:165–175. https://doi.org/10.4187/respcare.01640

    Article  PubMed  Google Scholar 

  14. ATS/ACCP Statement on Cardiopulmonary Exercise Testing (2003). Am J Respir Crit Care Med 167:211–77. https://doi.org/10.1164/rccm.167.2.211

  15. Deitch EA, Livingston DH, Lavery RF, Monaghan SF, Bongu A, Machiedo GW (2007) Hormonally active women tolerate shock-trauma better than do men. Ann Surg 246:447–455. https://doi.org/10.1097/SLA.0b013e318148566

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wohltmann CD, Franklin GA, Boaz PW, Luchette FA, Kearney PA, Richardson JD et al (2001) A multicenter evaluation of whether gender dimorphism affects survival after trauma. Am J Surg 181:297–300. https://doi.org/10.1016/S0002-9610(01)00582-7

    Article  CAS  PubMed  Google Scholar 

  17. Mostafa G, Huynh T, Sing RF, Miles WS, Norton HJ, Thomason MH (2002) Gender-related outcomes in trauma. J Trauma Inj Infect Crit Care 53:430–435. https://doi.org/10.1097/00005373-200209000-00006

    Article  Google Scholar 

  18. Bösch F, Angele MK, Chaudry IH (2018) Gender differences in trauma, shock and sepsis. Mil Med Res. 5:35. https://doi.org/10.1186/s40779-018-0182-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miller M, Keith J, Berman J, Burlington DB, Grudzinskas C, Hubbard W et al (2014) Efficacy of 17α-ethynylestradiol-3-sulfate for severe hemorrhage in minipigs in the absence of fluid resuscitation. J Trauma Acute Care Surg 76:1409–1416. https://doi.org/10.1097/TA.0000000000000237

    Article  CAS  PubMed  Google Scholar 

  20. Li T, Xiao X, Zhang J, Zhu Y, Hu Y, Zang J et al (2014) Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol - Hear Circ Physiol. https://doi.org/10.1152/ajpheart.00645.2013

    Article  Google Scholar 

  21. Offner PJ (1999) Male gender is a risk factor for major infections after surgery. Arch Surg 134:935. https://doi.org/10.1001/archsurg.134.9.935

    Article  CAS  PubMed  Google Scholar 

  22. Frink M, Pape H-C, van Griensven M, Krettek C, Chaudry IH, Hildebrand F (2007) Influence of sex and age on mods and cytokines after multiple injuries. Shock 27:151–156. https://doi.org/10.1097/01.shk.0000239767.64786.de

    Article  CAS  PubMed  Google Scholar 

  23. Clocchiatti A, Cora E, Zhang Y, Dotto GP (2016) Sexual dimorphism in cancer. Nat Rev Cancer 16:330–339. https://doi.org/10.1038/nrc.2016.30

    Article  CAS  PubMed  Google Scholar 

  24. Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L (2018) Sexual dimorphism of immune responses: a new perspective in cancer immunotherapy. Front Immunol. https://doi.org/10.3389/fimmu.2018.00552

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yuan Y, Liu L, Chen H, Wang Y, Xu Y, Mao H et al (2016) Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell 29:711–722. https://doi.org/10.1016/j.ccell.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuo W, Zhang W, Chen N-H (2013) Sexual dimorphism in cerebral ischemia injury. Eur J Pharmacol 711:73–79. https://doi.org/10.1016/j.ejphar.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  27. Callewaert F, Sinnesael M, Gielen E, Boonen S, Vanderschueren D (2010) Skeletal sexual dimorphism: relative contribution of sex steroids, GH–IGF1, and mechanical loading. J Endocrinol 207:127–134. https://doi.org/10.1677/JOE-10-0209

    Article  CAS  PubMed  Google Scholar 

  28. Shufelt CL, Pacheco C, Tweet MS, Miller VM (2018) Sex-specific physiology and cardiovascular disease. Springer, Cham, pp 433–454. https://doi.org/10.1007/978-3-319-77932-4_27

    Book  Google Scholar 

  29. Townsend EA, Miller VM, Prakash YS (2012) Sex differences and sex steroids in lung health and disease. Endocr Rev 33:1–47. https://doi.org/10.1210/er.2010-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barsky AJ, Peekna HM, Borus JF (2001) Somatic symptom reporting in women and men. J Gen Intern Med 16:266–275. https://doi.org/10.1046/j.1525-1497.2001.00229.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis KB, Chaitman B, Ryan T, Bittner V, Kennedy JW (1995) Comparison of 15-year survival for men and women after initial medical or surgical treatment for coronary artery disease: a CASS (Coronary Artery Surgery Study) registry study. J Amer Coll Cardiol. 25(5):1000–1009. https://doi.org/10.1016/0735

    Article  CAS  Google Scholar 

  32. Lee SK (2018) Sex as an important biological variable in biomedical research. BMB Rep 51:167–173. https://doi.org/10.5483/BMBRep.2018.51.4.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holdcroft A (2007) Gender bias in research: how does it affect evidence-based medicine? J R Soc Med 100:2–3. https://doi.org/10.1258/jrsm.100.1.2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge our colleagues from the Divisions of Radiology and Medical Imaging, Pulmonary Medicine, and Cardiology. Our research—and the day-to-day care of patients in our comprehensive Chest Wall Center—would not be possible without this multidisciplinary collaboration.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. It was completed with internal funding from the Department of Pediatric General and Thoracic Surgery at Cincinnati Children’s Hospital Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeccah L. Brown.

Ethics declarations

Conflicts of interest

The authors have no relevant conflicts of interest or disclosures.

Ethical approval

Retrospective data collection was conducted with approval from the Cincinnati Children’s Hospital Medical Center (CCHMC) Institutional Review Board (IRB) under protocol number 2017-5823—“Retrospective review of pre-operative pulmonary and cardiac function in patients with pectus excavatum”.

Human participants

This article does not contain any experimental studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casar Berazaluce, A.M., Jenkins, T.M., Garrison, A.P. et al. The chest wall gender divide: females have better cardiopulmonary function and exercise tolerance despite worse deformity in pectus excavatum. Pediatr Surg Int 36, 1281–1286 (2020). https://doi.org/10.1007/s00383-020-04738-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-020-04738-5

Keywords

Navigation