Skip to main content

Advertisement

Log in

Impaired cytoskeletal arrangements and failure of ventral body wall closure in chick embryos treated with rock inhibitor (Y-27632)

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Aim

Rho-associated kinase (ROCK) signaling regulates numerous fundamental developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. ROCK knockout mice exhibit a ventral body wall defect (VBWD) phenotype due to disorganization of actin filaments at the umbilical ring. However, the exact molecular mechanisms leading to VBWD still remain unclear. Improper somitogenesis has been hypothesized to contribute to failure of VBW closure. We designed this study to investigate the hypothesis that administration of ROCK inhibitor (Y-27632) disrupts cytoskeletal arrangements in morphology during early chick embryogenesis, which may contribute to the development of VBWD.

Methods

At 60 h incubation, chick embryos were explanted into shell-less culture and treated with 50 µL of vehicle for controls (n = 33) or 50 µL of 500 µM of Y-27632 for the experimental group (Y-27, n = 56). At 8 h post-treatment, RT-PCR was performed to evaluate mRNA levels of N-cadherin, E-cadherin and connexin43. Immunofluorescence confocal microscopy was performed to analyze the expression and distribution of actin, vinculin and microtubules in the neural tube and somites. A further cohort of embryos was treated in ovo by dropping 50 µL of vehicle or 50 µL of different concentrations of Y-27632 onto the embryo and allowing development to 12 and 14 days for further assessment.

Results

Gene expression levels of N-cadherin, E-cadherin and connexin43 were significantly decreased in treated embryos compared with controls (p < 0.05). Thickened actin filament bundles were recorded in the neural tube of Y-27 embryos. In somites, cells were dissociated with reduced actin distribution in affected embryos. Clumping of vinculin expression was found in the neural tube and somites, whereas reduced expression of microtubules was observed in Y-27 embryos compared with controls. At 12 and 14 days of development, affected embryos presented with an enlarged umbilical ring and herniation of abdominal contents through the defect.

Conclusion

ROCK inhibition alters cytoskeletal arrangement during early chick embryogenesis, which may contribute to failure of anterior body wall closure causing VBWD at later stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feldkamp ML, Carey JC, Sadler TW (2007) Development of gastroschisis: review of hypotheses, a novel hypothesis, and implications for research. Am J Med Genet A 143A(7):639–652

    Article  PubMed  Google Scholar 

  2. Kelly KB, Ponsky TA (2013) Pediatric abdominal wall defects. Surg Clin N Am 93(5):1255–1267

    Article  PubMed  Google Scholar 

  3. Lopez de Torre B, Tovar JA, Uriarte S, Aldazabal P (1991) Transperitoneal exchanges of water and solutes in the fetus with gastroschisis. Experimental study in the chick embryo. Eur J Pediatr Surg 1(6):346–352

    Article  PubMed  CAS  Google Scholar 

  4. Thompson JM, Bannigan JG (2007) Omphalocele induction in the chick embryo by administration of cadmium. J Pediatr Surg 42(10):1703–1709

    Article  PubMed  Google Scholar 

  5. Van Dorp DR, Malleis JM, Sullivan BP, Klein MD (2010) Teratogens inducing congenital abdominal wall defects in animal models. Pediatr Surg Int 26(2):127–139

    Article  PubMed  Google Scholar 

  6. Yu J, Gonzalez-Reyes S, Diez-Pardo JA, Tovar JA (2003) Effects of prenatal dexamethasone on the intestine of rats with gastroschisis. J Pediatr Surg 38(7):1032–1035

    Article  PubMed  Google Scholar 

  7. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S (2005) ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168(6):941–953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thumkeo D, Shimizu Y, Sakamoto S, Yamada S, Narumiya S (2005) ROCK-I and ROCK-II cooperatively regulate closure of eyelid and ventral body wall in mouse embryo. Genes Cells 10(8):825–834

    Article  PubMed  CAS  Google Scholar 

  9. Nagaya M, Kato J, Niimi N, Tanaka S (2000) Lordosis of lumbar vertebrae in omphalocele: an important factor in regulating abdominal cavity capacity. J Pediatr Surg 35(12):1782–1785

    Article  PubMed  CAS  Google Scholar 

  10. Thompson J, Bannigan J (2001) Effects of cadmium on formation of the ventral body wall in chick embryos and their prevention by zinc pretreatment. Teratology 64(2):87–97

    Article  PubMed  CAS  Google Scholar 

  11. Doi T, Puri P, Bannigan J, Thompson J (2008) Downregulation of ROCK-I and ROCK-II gene expression in the cadmium-induced ventral body wall defect chick model. Pediatr Surg Int 24(12):1297–1301

    Article  PubMed  Google Scholar 

  12. Julian L, Olson MF (2014) Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5:e29846

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23(12):4219–4229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Schofield AV, Bernard O (2013) Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 48(4):301–316

    Article  PubMed  CAS  Google Scholar 

  15. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514

    Article  PubMed  CAS  Google Scholar 

  17. Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton–plasma membrane interplay by phosphoinositides. Physiol Rev 90(1):259–289

    Article  PubMed  CAS  Google Scholar 

  18. Stricker J, Falzone T, Gardel ML (2010) Mechanics of the F-actin cytoskeleton. J Biomech 43(1):9–14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4(6):446–456

    Article  PubMed  CAS  Google Scholar 

  20. Brewer S, Williams T (2004) Finally, a sense of closure? Animal models of human ventral body wall defects. Bioessays 26(12):1307–1321

    Article  PubMed  Google Scholar 

  21. Sadler TW, Feldkamp ML (2008) The embryology of body wall closure: relevance to gastroschisis and other ventral body wall defects. Am J Med Genet C Semin Med Genet 148C(3):180–185

    Article  PubMed  CAS  Google Scholar 

  22. Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67(9):545–554

    Article  CAS  Google Scholar 

  23. Kulesa PM, Schnell S, Rudloff S, Baker RE, Maini PK (2007) From segment to somite: segmentation to epithelialization analyzed within quantitative frameworks. Dev Dyn 236(6):1392–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  PubMed  CAS  Google Scholar 

  25. Duess JW, Fujiwara N, Corcionivoschi N, Puri P, Thompson J (2013) ROCK inhibitor (Y-27632) disrupts somitogenesis in chick embryos. Pediatr Surg Int 29(1):13–18

    Article  PubMed  Google Scholar 

  26. Dugan JD Jr, Lawton MT, Glaser B, Brem H (1991) A new technique for explantation and in vitro cultivation of chicken embryos. Anat Rec 229(1):125–128

    Article  PubMed  Google Scholar 

  27. Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, Taha MS, Nagel-Steger L, Piekorz RP, Somlyo AV, Ahmadian MR (2013) Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem 394(11):1399–1410

    Article  PubMed  CAS  Google Scholar 

  28. Sadler TW (2005) Embryology of neural tube development. Am J Med Genet C Semin Med Genet 135C(1):2–8

    Article  PubMed  CAS  Google Scholar 

  29. Burke AC, Nowicki JL (2003) A new view of patterning domains in the vertebrate mesoderm. Dev Cell 4(2):159–165

    Article  PubMed  CAS  Google Scholar 

  30. Cullinane J, Bannigan J, Thompson J (2009) Cadmium teratogenesis in the chick: period of vulnerability using the early chick culture method, and prevention by divalent cations. Reprod Toxicol 28(3):335–341

    Article  PubMed  CAS  Google Scholar 

  31. Kim W, Matsui T, Yamao M, Ishibashi M, Tamada K, Takumi T, Kohno K, Oba S, Ishii S, Sakumura Y, Bessho Y (2011) The period of the somite segmentation clock is sensitive to Notch activity. Mol Biol Cell 22(18):3541–3549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dahmann C, Oates AC, Brand M (2011) Boundary formation and maintenance in tissue development. Nat Rev Genet 12(1):43–55

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi Y, Sato Y (2008) Somitogenesis as a model to study the formation of morphological boundaries and cell epithelialization. Dev Growth Differ 50(Suppl 1):S149–S155

    Article  PubMed  CAS  Google Scholar 

  34. Correia KM, Conlon RA (2000) Surface ectoderm is necessary for the morphogenesis of somites. Mech Dev 91(1–2):19–30

    Article  PubMed  CAS  Google Scholar 

  35. Sosic D, Brand-Saberi B, Schmidt C, Christ B, Olson EN (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Dev Biol 185(2):229–243

    Article  PubMed  CAS  Google Scholar 

  36. Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, Rivkees SA, Schwartz RJ, Imanaka-Yoshida K (2001) Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128(15):2953–2962

    PubMed  CAS  Google Scholar 

  37. Honjo M, Inatani M, Kido N, Sawamura T, Yue BY, Honda Y, Tanihara H (2001) Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol 119(8):1171–1178

    Article  PubMed  CAS  Google Scholar 

  38. Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S (2012) RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 227(6):2722–2729

    Article  PubMed  CAS  Google Scholar 

  39. Sakata H, Sakabe M, Matsui H, Kawada N, Nakatani K, Ikeda K, Yamagishi T, Nakajima Y (2007) Rho kinase inhibitor Y27632 affects initial heart myofibrillogenesis in cultured chick blastoderm. Dev Dyn 236(2):461–472

    Article  PubMed  CAS  Google Scholar 

  40. Linask KK, Ludwig C, Han MD, Liu X, Radice GL, Knudsen KA (1998) N-cadherin/catenin-mediated morphoregulation of somite formation. Dev Biol 202(1):85–102

    Article  PubMed  CAS  Google Scholar 

  41. Anderson SC, Stone C, Tkach L, SundarRaj N (2002) Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci 43(4):978–986

    PubMed  Google Scholar 

  42. Shimizu T, Yabe T, Muraoka O, Yonemura S, Aramaki S, Hatta K, Bae YK, Nojima H, Hibi M (2005) E-cadherin is required for gastrulation cell movements in zebrafish. Mech Dev 122(6):747–763

    Article  PubMed  CAS  Google Scholar 

  43. Berthoud VM, Singh R, Minogue PJ, Ragsdale CW, Beyer EC (2004) Highly restricted pattern of connexin36 expression in chick somite development. Anat Embryol (Berl) 209(1):11–18

    Article  CAS  Google Scholar 

  44. Wiens D, Jensen L, Jasper J, Becker J (1995) Developmental expression of connexins in the chick embryo myocardium and other tissues. Anat Rec 241(4):541–553

    Article  PubMed  CAS  Google Scholar 

  45. Peng X, Nelson ES, Maiers JL, DeMali KA (2011) New insights into vinculin function and regulation. Int Rev Cell Mol Biol 287:191–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11(7):502–514

    Article  PubMed  CAS  Google Scholar 

  47. Mohan R, John A (2015) Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life 67(6):395–403

    Article  PubMed  CAS  Google Scholar 

  48. Chernoff EA, Hilfer SR (1982) Calcium dependence and contraction in somite formation. Tissue Cell 14(3):435–449

    Article  PubMed  CAS  Google Scholar 

  49. Lane MC, Keller R (1997) Microtubule disruption reveals that Spemann’s organizer is subdivided into two domains by the vegetal alignment zone. Development 124(4):895–906

    PubMed  CAS  Google Scholar 

  50. Takesono A, Heasman SJ, Wojciak-Stothard B, Garg R, Ridley AJ (2010) Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 5(1):e8774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kadir S, Astin JW, Tahtamouni L, Martin P, Nobes CD (2011) Microtubule remodelling is required for the front–rear polarity switch during contact inhibition of locomotion. J Cell Sci 124(Pt 15):2642–2653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Stehbens SJ, Paterson AD, Crampton MS, Shewan AM, Ferguson C, Akhmanova A, Parton RG, Yap AS (2006) Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci 119(Pt 9):1801–1811

    Article  PubMed  CAS  Google Scholar 

  53. Laplante I, Beliveau R, Paquin J (2004) RhoA/ROCK and Cdc42 regulate cell-cell contact and N-cadherin protein level during neurodetermination of P19 embryonal stem cells. J Neurobiol 60(3):289–307

    Article  PubMed  CAS  Google Scholar 

  54. Zhang Z, Sun P, Yu F, Yan L, Yuan F, Zhang W, Wang T, Wan Z, Shao Q, Li Z (2012) Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels. PLoS One 7(12):e50817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Heiblum R, Arnon E, Chazan G, Robinzon B, Gvaryahu G, Snapir N (2001) Glucocorticoid administration during incubation: embryo mortality and posthatch growth in chickens. Poult Sci 80(9):1357–1363

    Article  PubMed  CAS  Google Scholar 

  56. Moghaddam A, Karimi I, Borji M, Bahadori S, Abdolmohammadi A (2013) Effect of royal jelly in ovo injection on embryonic growth, hatchability, and gonadotropin levels of pullet breeder chicks. Theriogenology 80(3):193–198

    Article  PubMed  CAS  Google Scholar 

  57. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57(5):976–983

    PubMed  CAS  Google Scholar 

  58. Li M, Huang Y, Ma AA, Lin E, Diamond MI (2009) Y-27632 improves rotarod performance and reduces huntingtin levels in R6/2 mice. Neurobiol Dis 36(3):413–420

    Article  PubMed  CAS  Google Scholar 

  59. Thompson J, Wong L, Lau PS, Bannigan J (2008) Adherens junction breakdown in the periderm following cadmium administration in the chick embryo: distribution of cadherins and associated molecules. Reprod Toxicol 25(1):39–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duess, J.W., Puri, P. & Thompson, J. Impaired cytoskeletal arrangements and failure of ventral body wall closure in chick embryos treated with rock inhibitor (Y-27632). Pediatr Surg Int 32, 45–58 (2016). https://doi.org/10.1007/s00383-015-3811-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-015-3811-z

Keywords

Navigation