Skip to main content
Log in

Variability of the M2 internal tides in the Luzon Strait under climate change

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Internal tides (ITs) radiated from the Luzon Strait (LS) to the South China Sea (SCS) exhibit variability closely related to changes of stratification. Based on the CanESM5 simulation from the sixth phase of Coupled Model Intercomparison Project, the stratification within the LS will increase in the following century due to climate change resulting from human activities. Here we conduct numerical experiments to investigate changes of the M2 ITs under different shared socioeconomic pathway (SSP) scenarios. Results show that the cumulative generation of ITs within the LS weakens with strengthening stratification. The amount of ITs generated in the LS will decrease by 22.7% (2.7%) and that propagating into the SCS will decrease by 27.9% (4.4%) in a century under the SSP5-8.5 (SSP1-2.6) scenario that represents the high (low) end of future emissions. The changes are attributed to the interference of the M2 ITs within the double ridges, which weakens as the stratification strengthens and finally reduces the IT generation. Considering that ITs are one of the most important energy sources for diapycnal mixing, the decrease in ITs would have significant physical and biogeochemical implications in the LS and the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

CanESM5 data used in this study can be downloaded from the CMIP6 database at https://esgf-node.llnl.gov/projects/cmip6/.

References

  • Alford MH, MacKinnon JA, Nash JD, Simmons H, Pickering A, Klymak JM, Musgrave R (2011) Energy flux and dissipation in Luzon Strait: two tales of two ridges. J Phys Oceanogr 41(11):2211–2222

    Article  ADS  Google Scholar 

  • Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC, Centurioni LR, Fringer OB (2015) The formation and fate of internal waves in the South China Sea. Nature 521(7550):65

    Article  ADS  CAS  PubMed  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA

  • Buijsman MC, Legg S, Klymak J (2012) Double ridge internal tide interference and its effect on dissipation in Luzon Strait. J Phys Oceanogr 42:1337–2135

    Article  ADS  Google Scholar 

  • Buijsman MC, Klymak JM, Legg S, Alford MH, Farmer D, MacKinnon JA, Simmons H (2014) Three-dimensional double-ridge internal tide resonance in Luzon Strait. J Phys Oceanogr 44(3):850–869

    Article  ADS  Google Scholar 

  • Cao A, Guo Z, Wang S, Guo X, Song J (2022) Incoherence of the M2 and K1 internal tides radiated from the Luzon Strait under the influence of looping and leaping Kuroshio. Prog Oceanogr 206:102850

    Article  Google Scholar 

  • Cao A, Guo Z, Wang S, Chen X, Song J, Guo X (2023a) Energetics of the M2 internal tides modulated by typhoons at the Luzon Strait. Ocean Model 186:102243

    Article  Google Scholar 

  • Cao A, Guo Z, Wang S, Guo X, Song J (2023b) Numerical evaluation of internal tide characteristics extracted from mobile float observations: a case study near the Luzon Strait. J Atmos Ocean Technol 40(8):957–968

    Article  Google Scholar 

  • DeCarlo TM, Karnauskas KB, Davis KA, Wong GTF (2015) Climate modulates internal wave activity in the Northern South China Sea. Geophys Res Lett 42(3):831–838

    Article  ADS  Google Scholar 

  • Dushaw BD (2006) Mode-1 internal tides in the western North Atlantic Ocean. Deep Sea Res Part I 53(3):449–473

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Article  ADS  Google Scholar 

  • Fu W, Randerson JT, Moore JK (2016) Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13(18):5151–5170

    Article  ADS  Google Scholar 

  • Garrett C, Kunze E (2007) Internal tide generation in the deep ocean. Annu Rev Fluid Mech 39(1):57–87

    Article  ADS  MathSciNet  Google Scholar 

  • Guo Z, Cao A, Lv X, Song J (2020) Impacts of stratification variation on the M2 internal tide generation in Luzon Strait. Atmos Ocean 58(3):206–218

    Article  ADS  Google Scholar 

  • Guo Z, Wang S, Cao A, Xie J, Song J, Guo X (2023) Refraction of the M2 internal tides by mesoscale eddies in the South China Sea. Deep Sea Res Part I 192:103946

    Article  Google Scholar 

  • Kerry CG, Powell BS, Carter GS (2014) The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. J Phys Oceanogr 44(5):1386–1405

    Article  ADS  Google Scholar 

  • Kerry CG, Powell BS, Carter GS (2016) Quantifying the incoherent M2 internal tide in the Philippine Sea. J Phys Oceanogr 46(8):2483–2491

    Article  ADS  Google Scholar 

  • Klymak JM, Pinkel R, Rainville L (2008) Direct breaking of the internal tide near topography: Kaena Ridge. Hawaii J Phys Oceanogr 38(2):380–399

    Article  ADS  Google Scholar 

  • Kunze E (2017) Internal-wave-driven mixing: global geography and budgets. J Phys Oceanogr 47(6):1325–1345

    Article  ADS  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403

    Article  ADS  Google Scholar 

  • Li D, Chou WC, Shih YY, Chen GY, Chang Y, Chow CH, Hung CC (2018) Elevated particulate organic carbon export flux induced by internal waves in the oligotrophic northern South China Sea. Sci Rep 8(1):2042. https://doi.org/10.1038/s41598-018-20184-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP (2020) Increasing ocean stratification over the past half-century. Nat Clim Change 10(12):1116–1123

    Article  ADS  Google Scholar 

  • MacKinnon JA, Alford MH, Pinkel R, Klymak J, Zhao Z (2013) The latitudinal dependence of shear and mixing in the pacific transiting the critical latitude for PSI. J Phys Oceanogr 43(1):3–16

    Article  ADS  Google Scholar 

  • Melet A, Legg S, Hallberg R (2016) Climatic impacts of parameterized local and remote tidal mixing. J Clim 29(10):3473–3500

    Article  ADS  Google Scholar 

  • Moore JK, Fu W, Primeau F, Britten GL, Lindsay K, Long M, Randerson JT (2018) Sustained climate warming drives declining marine biological productivity. Science 359(6380):1139–1143

    Article  ADS  CAS  PubMed  Google Scholar 

  • Müller P, Xu N (1992) Scattering of oceanic internal gravity waves off random bottom topography. J Phys Oceanogr 22(5):474–488

    Article  ADS  Google Scholar 

  • Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res 45(12):1977–2010

    Article  Google Scholar 

  • Nan F, Xue H, Chai F, Shi L, Shi M, Guo P (2011) Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn 61(9):1291–1304

    Article  ADS  Google Scholar 

  • Nash JD, Alford MH, Kunze E (2005) Estimating internal wave energy fluxes in the ocean. J Atmos Ocean Technol 22(10):1551–1570

    Article  Google Scholar 

  • Niwa Y, Hibiya T (2004) Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109:C04027

    Article  ADS  Google Scholar 

  • O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Sanderson BM (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482

    Article  ADS  Google Scholar 

  • Osborne AR, Burch TL (1980) Internal solitons in the Andaman Sea. Science 208(4443):451–460

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rudnick DL, Boyd TJ, Brainard RE, Carter GS, Egbert GD, Gregg MC, Sanford TB (2003) From tides to mixing along the Hawaiian Ridge. Science 301(5631):355–357

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sharples J, Zeldis JR (2021) Variability of internal tide energy, mixing and nitrate fluxes in response to changes in stratification on the northeast New Zealand continental shelf. NZ J Mar Freshw Res 55(1):94–111

    Article  CAS  Google Scholar 

  • Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep-Sea Res Part II 51(25):3043–3068

    Article  ADS  Google Scholar 

  • Smyth WD, Moum JN, Nash JD (2011) Narrowband, high-frequency oscillations at the equator. Part II: properties of shear instabilities. J Phys Oceanogr 41:412–428

    Article  ADS  Google Scholar 

  • Storlazzi CD, Cheriton OM, van Hooidonk R, Zhao Z, Brainard R (2020) Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Sci Rep 10(1):13435

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Winter B (2019a) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12(11):4823–4873

    Article  ADS  CAS  Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Sigmond M (2019b) CCCma CanESM5 model output prepared for CMIP6 Scenario MIP. Version 20190429. Earth System Grid Federation

  • Tanaka Y (2023) Energy conversion rate from subinertial surface tides to internal tides. J Phys Oceanogr 53(5):1355–1374

    Article  ADS  Google Scholar 

  • Tanaka Y, Yasuda I, Osafune S, Tanaka T, Nishioka J, Volkov YN (2014) Internal tides and turbulent mixing observed in the Bussol Strait. Prog Oceanogr 126:98–108

    Article  ADS  Google Scholar 

  • Tatebe H, Tanaka Y, Komuro Y, Hasumi H (2018) Impact of deep ocean mixing on the climatic mean state in the Southern Ocean. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Tweddle JF, Palmer MR, Davidson K, McNeill S (2013) Enhanced nutrient fluxes at the shelf sea seasonal thermocline caused by stratified flow over a bank. Prog Oceanogr 117:37–47

    Article  ADS  Google Scholar 

  • Wang X, Peng S, Liu Z, Huang RX, Qian Y-K, Li Y (2016) Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J Phys Oceanogr 46(1):107–124

    Article  ADS  Google Scholar 

  • Wang S, Cao A, Chen X, Li Q, Song J (2021) On the resonant triad interaction over mid-ocean ridges. Ocean Model 158:101734

    Article  Google Scholar 

  • Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E, Simmons HL, Lee CM (2014) Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanogr 44(7):1854–1872

    Article  ADS  Google Scholar 

  • Whalen CB, de Lavergne C, Naveira Garabato AC, Klymak JM, MacKinnon JA, Sheen KL (2020) Internal wave-driven mixing: governing processes and consequences for climate. Nat Rev Earth Environ 1(11):606–621

    Article  ADS  CAS  Google Scholar 

  • Xu Z, Liu K, Yin B, Zhao Z, Wang Y, Li Q (2016) Long-range propagation and associated variability of internal tides in the South China Sea. J Geophys Res Oceans 121(11):8268–8286

    Article  ADS  Google Scholar 

  • Xu Z, Wang Y, Liu Z, McWilliams JC, Gan J (2021) Insight into the dynamics of the radiating internal tide associated with the Kuroshio current. J Geophys Res Oceans 126(6):e2020JC017018

    Article  ADS  Google Scholar 

  • Yadidya B, Rao AD (2022) Projected climate variability of internal waves in the Andaman Sea. Commun Earth Environ 3(1):252

    Article  ADS  Google Scholar 

  • Zhai R-W, Chen G-Y, Liang C-R, Shang X-D, Xie J-S (2020) The Influence of ENSO on the Structure of Internal Tides in the Xisha Area. J Geophys Res Oceans 125(3):e2019JC015405

    Article  ADS  Google Scholar 

  • Zhao Z (2014) Internal tide radiation from the Luzon Strait. J Geophys Res Oceans 119(8):5434–5448

    Article  ADS  Google Scholar 

  • Zhao Z, Qiu B (2023) Seasonal West-East Seesaw of M2 internal tides from the Luzon Strait. J Geophys Res Oceans 128(3):e2022JC019281

    Article  ADS  Google Scholar 

  • Zhao Z, Alford MH, MacKinnon JA, Pinkel R (2010) Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J Phys Oceanogr 40(4):713–736

    Article  ADS  Google Scholar 

  • Zilberman N, Merrifield M, Carter G, Luther D, Levine M, Boyd T (2011) Incoherent nature of M 2 internal tides at the Hawaiian Ridge. J Phys Oceanogr 41(11):2021–2036

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Bureau of Science and Technology of Zhoushan through the Zhejiang Ocean University Science and Technology Project (No. 2023C41012) and the National Natural Science Foundation of China (Grant Number: 42176002).

Author information

Authors and Affiliations

Authors

Contributions

A Cao and S Wang contributed to the study conception and design. Z Guo conducted numerical experiments, performed the analysis and wrote the first draft of the manuscript. All authors contributed to the discussions, commented on previous versions of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Anzhou Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Wang, S., Cao, A. et al. Variability of the M2 internal tides in the Luzon Strait under climate change. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07148-8

Keywords

Navigation