Skip to main content

Advertisement

Log in

Response of summer precipitation over the Tibetan Plateau to large tropical volcanic eruptions in the last millennium

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changes in summer precipitation over the Tibetan Plateau (TP) significantly influence the surface runoff, river discharge and water availability for the downstream Asian countries, which is sensitive to external forcing. But its response to volcanic eruptions remains unknown. Here we investigate the summer precipitation changes after tropical volcanic eruptions over the TP region by using multiple lines of evidence including reconstructions over the last hundreds of years, observations during recent decades and model simulations covering the last millennium. Both the instrumental data and reconstructions reveal a significant reduction in summer precipitation over the southern TP region during the first summer following tropical volcanic eruptions, which are further confirmed by the coupled model simulations driven by volcanic forcing. The model results indicate that both the dynamic processes related to atmospheric circulation changes and the thermodynamic processes related to specific humidity changes contribute to the decreased precipitation in the southwestern TP, while the thermodynamic process dominates the reduction of precipitation in the southeastern TP. The thermodynamic process results from decreased atmospheric precipitable water caused by decreased surface temperature after tropical volcanic eruptions. The dynamic processes are caused by increased gross moist stability, spatial distribution of surface cooling and a southward shift of westerlies related to weakening and shrinking of Hadley circulation following tropical eruptions. Our results imply that major tropical eruptions have significant impact on the summer precipitation over the southern TP regions, which will further decrease the source of supply for the TP glaciers and runoff output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The CESM-LME simulations were acquired from the website of Earth system grid (https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_LME.html). The reconstructions were acquired from the website of NCDC (https://www.ncei.noaa.gov/access/paleo-search/). Other published sources of observational datasets for precipitation are cited in the main text.

References

  • Acosta RP, Huber M (2017) The neglected Indo-Gangetic Plains low-level jet and its importance for moisture transport and precipitation during the peak summer monsoon. Geophys Res Lett 44(16):8601–8610

    Article  Google Scholar 

  • Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426(6964):274–278

    Article  Google Scholar 

  • Anand A, Mishra SK, Sahany S, Bhowmick M, Rawat JS, Dash SK (2018) Indian Summer Monsoon Simulations: Usefulness of Increasing Horizontal Resolution, Manual Tuning, and Semi-Automatic Tuning in Reducing Present-Day Model Biases.Sci Rep8

  • Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37(22):L22703

    Article  Google Scholar 

  • Annamalai H, Taguchi B, McCreary JP, Nagura M, Miyama T (2017) Systematic Errors in South Asian Monsoon Simulation: Importance of Equatorial Indian Ocean Processes. J Clim 30(20):8159–8178

    Article  Google Scholar 

  • Azoulay A, Schmidt H, Timmreck C (2021) The Arctic polar vortex response to volcanic forcing of different strengths. Journal of Geophysical Research: Atmospheres, 126(11), e2020JD034450

  • Back LE, Bretherton CS (2009) A Simple Model of Climatological Rainfall and Vertical Motion Patterns over the Tropical Oceans. J Clim 22(23):6477–6497

    Article  Google Scholar 

  • Barnes EA, Solomon S, Polvani LM (2016) Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption, as Simulated in the CMIP5 Models. J Clim 29(13):4763–4778

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Clim Dyn 33(7–8):1017–1032

    Article  Google Scholar 

  • Bollasina MA, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn 40(3–4):823–838

    Article  Google Scholar 

  • Boos WR, Hurley JV (2013) Thermodynamic Bias in the Multimodel Mean Boreal Summer Monsoon. J Clim 26(7):2279–2287

    Article  Google Scholar 

  • Chai J, Liu F, Xing C, Wang B, Gao C, Liu J, Chen D (2020) A robust equatorial Pacific westerly response to tropical volcanism in multiple models. Clim Dyn 55(11–12):3413–3429

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the “Rich-Get-Richer’’ Mechanism in Tropical Precipitation Change under Global Warming. J Clim 22(8):1982–2005

    Article  Google Scholar 

  • Cui X, Gao Y, Sun J (2014) The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv Atmos Sci 31(6):1245–1255

    Article  Google Scholar 

  • D’Agostino R, Brown JR, Moise A, Nguyen H, Silva Dias PL, Jungclaus J (2020) Contrasting southern hemisphere monsoon response: MidHolocene orbital forcing versus future greenhouse gas-induced global warming. J Clim 33(22):9595–9613

    Article  Google Scholar 

  • D’Agostino R, Timmreck C (2022) Sensitivity of regional monsoons to idealised equatorial volcanic eruption of different sulfur emission strengths. https://doi.org/10.1088/1748-9326/ac62af. Environmental Research Letters https://iopscience.

  • Dogar MM, Sato T (2019) A Regional Climate Response of Middle Eastern, African, and South Asian Monsoon Regions to Explosive Volcanism and ENSO Forcing. J Geophys Res 124(14):7580–7598

    Article  Google Scholar 

  • Ding T, Zhou T, Chen X et al (2021) Enhanced Turbulent Heat Fluxes Improve Meiyu-Baiu Simulation in High-Resolution Atmospheric Models. J Adv Model Earth Syst 13:1–19. https://doi.org/10.1029/2020MS002430

    Article  Google Scholar 

  • Ding Y, Carton JA, Chepurin GA, Stenchikov G, Robock A, Sentman LT, Krasting JP (2014) Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J Geophys Research-Oceans 119(9):5622–5637

    Article  Google Scholar 

  • Duan A, Sun R, He J (2017) Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land-air-sea interaction perspective. Adv Atmos Sci 34(2):157–168

    Article  Google Scholar 

  • Duan A, Wang M, Lei Y, Cui Y (2013) Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008. J Clim 26(1):261–275

    Article  Google Scholar 

  • Feng L, Zhou T (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis.J Geophys Res117

  • Feng S, Hu Q, Wu Q, Mann ME (2013) A Gridded Reconstruction of Warm Season Precipitation for Asia Spanning the Past Half Millennium. J Clim 26(7):2192–2204

    Article  Google Scholar 

  • Fiedler S, Crueger T, D’Agostino R, Peters K, Becker T, Leutwyler D, Paccini L, Burdanowitz J, Buehler SA, Cortes AU, Dauhut T, Dommenget D, Fraedrich K, Jungandreas L, Maher N, Naumann AK, Rugenstein M, Sakradzija M, Schmidt H, Sielmann F, Stephan C, Timmreck C, Zhu X, Stevens B (2020) Simulated Tropical Precipitation Assessed across Three Major Phases of the Coupled Model Intercomparison Project (CMIP). Mon Wea Rev 148(9):3653–3680

    Article  Google Scholar 

  • Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium.Geophys Res Lett34 (5)

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res 113:D23

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2007) Observational evidence for volcanic impact on sea level and the global water cycle. Proc Natl Acad Sci 104(50):19730–19734

    Article  Google Scholar 

  • Gu H, Yu Z, Peltier WR, Wang X (2020) Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Clim Dyn 54(7–8):3781–3801

    Article  Google Scholar 

  • Haurwitz MW, Brier GW (1981) A Critique of the superposed epoch analysis method – its application to solar weather relations. Mon Wea Rev 109(10):2074–2079

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Holm E, Janiskova M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thepaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1.Geophys Res Lett36

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The Community Earth System Model A Framework for Collaborative Research. Bull Amer Meteor Soc 94(9):1339–1360

    Article  Google Scholar 

  • Hu S, Zhou T, Wu B (2021) Impact of Developing ENSO on Tibetan Plateau Summer Rainfall. J Clim 34(9):3385–3400

    Article  Google Scholar 

  • Iles CE, Hegerl GC (2015) Systematic change in global patterns of streamflow following volcanic eruptions. Nat Geosci 8(11):838–842

    Article  Google Scholar 

  • Iles CE, Hegerl GC, Schurer AP, Zhang X (2013) The effect of volcanic eruptions on global precipitation. J Geophys Res 118(16):8770–8786

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate Change Will Affect the Asian Water Towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Izumo T, Montegut CdB, Luo J-J, Behera SK, Masson S, Yamagata T (2008) The Role of the Western Arabian Sea Upwelling in Indian Monsoon Rainfall Variability. J Clim 21(21):5603–5623

    Article  Google Scholar 

  • Joshi IS (2010) Volcanic eruptions and their effects on soi, sst and indian summer monsoon rainfall. Disaster Adv 3(4):582–585

    Google Scholar 

  • Levine RC, Turner AG (2012) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38(11–12):2167–2190

    Article  Google Scholar 

  • Li J, Yu R, Yuan W, Chen H, Sun W, Zhang Y (2015) Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J Adv Model Earth Syst 7(2):774–790

    Article  Google Scholar 

  • Li P, Furtado K, Zhou T, Chen H, Li J (2021) Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau. Q J R Meteorol Soc 147(734):341–362

    Article  Google Scholar 

  • Liang E, Dawadi B, Pederson N, Piao S, Zhu H, Sigdel SR, Chen D (2019) Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records. Sci Bull 64(14):1018–1023

    Article  Google Scholar 

  • Liu F, Zhao T, Wang B, Liu J, Luo W (2018) Different Global Precipitation Responses to Solar, Volcanic, and Greenhouse Gas Forcings. J Geophys Res 123(8):4060–4072

    Article  Google Scholar 

  • Liu W, Shi F, Xiao G, Xue H, Duan A, Xiao C, Guo Z (2021) Impact of volcanic eruptions on hydro-thermal combination of the Tibetan Plateau and Arctic during mid-fifteenth Century. Quaternary Sci 41(3):714–725

    Google Scholar 

  • Ma Y, Tang G, Long D, Yong B, Zhong L, Wan W, Hong Y (2016) Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau. Remote Sensing 8 (7)

  • Maher N, McGregor S, England MH, Sen Gupta A (2015) Effects of volcanism on tropical variability. Geophys Res Lett 42(14):6024–6033

    Article  Google Scholar 

  • Man W, Zhou T (2014) Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium. Chin Sci Bull 59(31):4123–4129

    Article  Google Scholar 

  • Neelin JD, Held IM, MODELING TROPICAL CONVERGENCE BASED ON THE MOIST STATIC ENERGY BUDGET (1987) Mon Wea Rev 115(1):3–12

    Article  Google Scholar 

  • O’Brien TA, Li F, Collins WD, Rauscher SA, Ringler TD, Taylor M, Hagos SM, Leung LR (2013) Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models %J. J Clim 26(23):9313–9333

    Article  Google Scholar 

  • Otto-Bliesner BL, Brady EC, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A, Strand G (2016) Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model. Bull Amer Meteor Soc 97(5):735–754

    Article  Google Scholar 

  • Paik S, Min S-K (2017) Climate responses to volcanic eruptions assessed from observations and CMIP5 multi-models. Clim Dyn 48(3–4):1017–1030

    Article  Google Scholar 

  • Pausata FSR, Camargo SJ (2019) Tropical cyclone activity affected by volcanically induced ITCZ shifts. Proc Natl Acad Sci 116(16):7732–7737

    Article  Google Scholar 

  • Peng Y, Shen C, Wang W-C, Xu Y (2010) Response of Summer Precipitation over Eastern China to Large Volcanic Eruptions. J Clim 23(3):818–824

    Article  Google Scholar 

  • Predybaylo E, Stenchikov GL, Wittenberg AT, Zeng F (2017) Impacts of a Pinatubo-size volcanic eruption on ENSO. J Geophys Res 122(2):925–947

    Article  Google Scholar 

  • Qiu J (2008) The third pole. Nature 454(7203):393–396

    Article  Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colon-Gonzalez FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111 (9):3245-3250.

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219

    Article  Google Scholar 

  • Shi F, Zhao S, Guo Z, Goosse H, Yin Q (2017) Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years. Clim Past 13(12):1919–1938

    Article  Google Scholar 

  • Shi H, Wang B, Cook ER, Liu J, Liu F (2018) Asian Summer Precipitation over the Past 544 Years Reconstructed by Merging Tree Rings and Historical Documentary Records. J Clim 31(19):7845–7861

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang IS et al (2013) The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. https://doi.org/10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Stevenson S, Otto-Bliesner B, Fasullo J, Brady E (2016) “El Niño Like” Hydroclimate Responses to Last Millennium Volcanic Eruptions. J Clim 29(8):2907–2921

    Article  Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208

    Article  Google Scholar 

  • Tan X, Ma Z, He K, Han X, Ji Q, He Y (2020) Evaluations on gridded precipitation products spanning more than half a century over the Tibetan Plateau and its surroundings. Journal of Hydrology 582.

  • Timmreck C (2012) Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdisciplinary Reviews-Climate Change 3(6):545–564

    Article  Google Scholar 

  • Tong K, Su F, Yang D, Zhang L, Hao Z (2014) Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int J Climatol 34(2):265–285

    Article  Google Scholar 

  • Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:15

    Article  Google Scholar 

  • Ueda H, Kamahori H, Yamazaki N (2003) Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan plateau during the GAME IOP. J Clim 16(14):2309–2324

    Article  Google Scholar 

  • Ward B, Pausata FS, Maher N (2021) The sensitivity of the El Niño-Southern Oscillation to volcanic aerosol spatial distribution in the MPI Grand Ensemble. Earth Sys Dyn 12(3):975–996

    Article  Google Scholar 

  • Wang T, Zhao Y, Xu C, Ciais P, Liu D, Yang H, Piao S, Yao T (2021) Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change 11 (3).

  • Wu B, Zhou T, Li T (2017) Atmospheric Dynamic and Thermodynamic Processes Driving the Western North Pacific Anomalous Anticyclone during El Nino. Part I: Maintenance Mechanisms. J Clim 30(23):9621–9635

    Article  Google Scholar 

  • Xie S-P, Xu H, Saji NH, Wang Y, Liu WT (2006) Role of narrow mountains in large-scale organization of Asian monsoon convection. J Clim 19(14):3420–3429

    Article  Google Scholar 

  • Xu X, Lu C, Shi X, Gao S (2008) World water tower: An atmospheric perspective.Geophys Res Lett35 (20)

  • Yao, T., Bolch, T., Chen, D. et al. (2022) The imbalance of the Asian water tower. Nat Rev Earth Environ. https://doi.org/10.1038/s43017-022-00299-4

  • Yang B, Qin C, Wang J, He M, Melvin TM, Osborn TJ, Briffa KR (2014) A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci 111(8):2903–2908

    Article  Google Scholar 

  • Yao T, Pu J, Lu A, Wang Y, Yu W (2007) Recent glacial retreat and its impact on hydrological processes on the tibetan plateau, China, and sorrounding regions. Arct Antarct Alp Res 39(4):642–650

    Article  Google Scholar 

  • Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2(9):663–667

    Article  Google Scholar 

  • Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun, Yang X, Ma Y, Shen SSP, Su Z, Chen F, Liang S, Liu Y, Singh VP, Yang K, Yang D, Zhao X, Qian Y, Zhang Y, Li Q (2019) Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull Amer Meteor Soc 100(3):423–444

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull Amer Meteor Soc 93(9):1401–1415

    Article  Google Scholar 

  • Zhang L, Su F, Yang D, Hao Z, Tong K (2013) Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. J Geophys Res 118(15):8500–8518

    Article  Google Scholar 

  • Zhang G, Xie H, Yao T, Li H, Duan S (2014) Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM). Journal of Hydrology 519:976-987.

  • Zhu Y-Y, Yang S (2020) Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv Clim Change Res 11(3):239–251

    Article  Google Scholar 

  • Zhuo Z, Gao C, Pan Y (2014) Proxy evidence for China’s monsoon precipitation response to volcanic aerosols over the past seven centuries. J Geophys Res 119(11):6638–6652

    Article  Google Scholar 

  • Zuo M, Man W, Zhou T, Guo Z (2018) Different Impacts of Northern, Tropical, and Southern Volcanic Eruptions on the Tropical Pacific SST in the Last Millennium. J Clim 31(17):6729–6744

    Article  Google Scholar 

  • Zuo M, Zhou T, Man W (2019) Hydroclimate Responses over Global Monsoon Regions Following Volcanic Eruptions at Different Latitudes. J Clim 32(14):4367–4385

    Article  Google Scholar 

  • Zuo M, Man W, Zhou T (2021) Dependence of Global Monsoon Response to Volcanic Eruptions on the Background Oceanic States. J Clim 34(20):8273–8289

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their valuable and helpful suggestions.

Funding

This work is jointly supported by the National Program on Key Basic Research Project of China (Grant No. 2017YFA0604601), the National Natural Science Foundation of China (Grants No. 41988101, 42105047), the National Program on Key Basic Research Project of China (Grant No. 2020YFA0608902), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0102), and the Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, M., Zhou, T. & Man, W. Response of summer precipitation over the Tibetan Plateau to large tropical volcanic eruptions in the last millennium. Clim Dyn 60, 3121–3138 (2023). https://doi.org/10.1007/s00382-022-06463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06463-2

Keywords

Navigation