Skip to main content

Advertisement

Log in

Multi-model ensemble of statistically downscaled GCMs over southeastern South America: historical evaluation and future projections of daily precipitation with focus on extremes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

High-resolution rainfall information is of great value, particularly over southeastern South America (SESA) where the observed and projected climate changes pose a substantial threat to socio-economic activities and the hydrological sector. Consequently, this work focuses on the construction of an unprecedented multi-model ensemble of statistically downscaled (ESD) global climate models (GCMs) for daily precipitation. Different statistical techniques were employed - including analogs, stochastic versions of regression-based models involving neural networks and generalised linear models and linear regressions conditioned by weather types - and a variety of CMIP5 and CMIP6 models. In general, most of the models added value in the representation of the main features of daily precipitation, especially in the spatial and intra-annual variability of extremes. The statistical models were sensible to the driving GCMs, although the ESD family choice also introduced differences among the simulations. The ESD projections depicted increases in mean precipitation associated with a rising frequency of extreme events - mostly during the warm season - following the observed trends over SESA. Change rates were consistent among downscaled models up to mid-21st century, when model spread started to emerge. Furthermore, these projections were compared to the available CORDEX-CORE RCM simulations, evidencing a consistent agreement between statistical and dynamical downscaling procedures in terms of the sign of the changes, presenting the main differences in their intensity. Overall, this study evidences the potential of statistical downscaling in a changing climate and contributes to its undergoing development over SESA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almazroui M, Ashfaq M, Islam MN et al (2021) Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth Syst Environ 5:155–183. https://doi.org/10.1007/s41748-021-00233-6

    Article  Google Scholar 

  • Araya-Osses D, Casanueva A, Román-Figueroa C, Uribe JM, Paneque M (2020) Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim Dyn 54:4309–4330. https://doi.org/10.1007/s00382-020-05231-4

    Article  Google Scholar 

  • Asong ZE, Khaliq MN, Wheater HS (2016) Projected Changes in Precipitation and Temperature over the Canadian Prairie Provinces using the Generalized Linear Model Statistical Downscaling Approach. J Hydrol 539:429–446. doi: https://doi.org/10.1016/j.jhydrol.2016.05.044

  • Bador M, Boé J, Terray L, Alexander LV, Baker A, Bellucci A et al (2020) Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. Journal of Geophysical Research: Atmospheres, 125, e2019JD032184. https://doi.org/10.1029/2019JD032184

  • Baño-Medina J, Manzanas R, Gutiérrez JM (2020) Configuration and Intercomparison of Deep Learning Neural Models for Statistical Downscaling. Geosci Model Dev 13(4):2109–2124. https://doi.org/10.5194/gmd-2019-278

    Article  Google Scholar 

  • Baño-Medina J, Manzanas R, Gutiérrez JM (2021) On the suitability of deep convolutional neural networks for continental-wide downscaling of climate change projections. Clim Dyn 57:2941–2951. https://doi.org/10.1007/s00382-021-05847-0

  • Bedia J, Baño-Medina J, Legasa MN, Iturbide M, Manzanas R, Herrera S, Casanueva A, San-Martín D, Cofiño AS, Gutiérrez JM (2020) Statistical downscaling with the downscaleR package: Contribution to the VALUE intercomparison experiment. Geosci Model Dev 13(3):1711–1735. https://doi.org/10.5194/gmd-2019-224

    Article  Google Scholar 

  • Benestad RE (2010) Downscaling precipitation extremes: Correction of analog models through PDF predictions, Theor. Appl Climatol 100:1–21. https://doi.org/10.1007/s00704-009-0158-1

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The norwegian earth system model, noresm1-m - part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720. https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Bettolli ML, Solman S, da Rocha RP, Llopart M, Gutiérrez JM, Fernández J, Olmo M, Lavín-Gullón A, Chou SC, Carneiro Rodrigues D, Coppola E, Balmaceda Huarte R, Barreiro M, Blázquez J, Doyle M, Feijoó M, Huth R, Machado L, Vianna Cuadra S (2021) The CORDEX Flagship Pilot Study in Southeastern South America: A comparative study of statistical and dynamical downscaling models in simulating daily extreme precipitation events. Clim Dyn 56:1589–1608. https://doi.org/10.1007/s00382-020-05549-z

  • Bettolli ML, Penalba OC (2018) Statistical downscaling of daily precipitation and temperatures in southern La Plata Basin. Int J Climatol 38:3705–3722. https://doi.org/10.1002/joc.5531

    Article  Google Scholar 

  • Blázquez J, Solman SA (2020) Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Clim Dyn 55:2089–2106. https://doi.org/10.1007/s00382-020-05370-8

    Article  Google Scholar 

  • Cahynová M, Huth R (2016) Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the COST733 catalogue. Int J Climatol 36:2743–2760

    Article  Google Scholar 

  • Cavalcanti I, Carril A, Penalba O, Grimm AM, Menéndez C, Sanchez E, Cherchi A, Sörensson A, Robledo F, Rivera J, Pantano V, Bettolli ML, Zaninelli P, Zamboni L, Tedeschi R, Domínguez M, Ruscica R, Flach R (2015) Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations. J Hydrol 523:211–230. https://doi.org/10.1016/j.jhydrol.2015.01.028

    Article  Google Scholar 

  • Cavazos T (1999) Large-scale circulation anomalies conducive to extreme events and simulation of daily rainfall in northeastern Mexico and southeastern Texas. J Clim 12:1506–1523

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Díaz LB, Saurral RI, Vera CS (2020) Assessment of South America summer rainfall climatology and trends in a set of global climate models large ensembles. Int J Climatol 41(S1):E59–E77. https://doi.org/10.1002/joc.6643

  • D’onofrio A, Boulanger JP, Segura EC (2010) CHAC: a weather pattern classification system for regional climate downscaling of daily precipitation. Clim Change 98:405–427. https://doi.org/10.1007/s10584-009-9738-4

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Falco M, Carril AF, Li LZ, Cabrelli C, Menéndez CG (2019) The potential added value of Regional Climate Models in South America using a multiresolution approach. Clim Dyn 54:1553–1569. https://doi.org/10.1007/s00382-019-05073-9

  • Fogli PG, Manzini E, Vichi M, Alessandri A, Patara L, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV-CMCC Carbon: A Carbon Cycle Earth System Model, CMCC online RP0061: http://www.cmcc.it/publications/rp0061-ingv-cmcc-carbon-icc-a-carbon-cycle-earth-system-model

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in mpi-esm simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Güttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) Regcm4: model description and preliminary tests over multiple cordex domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018http://www.int-res.com/abstracts/cr/v52/p7-29/

    Article  Google Scholar 

  • Gutiérrez JM, Maraun D, Widmann M, Huth R, Hertig E, Benestad R et al (2019) An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. Int J Climatol 39:3750–3785. https://doi.org/10.1002/joc.5462

    Article  Google Scholar 

  • Gutowski JW, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9(11):4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol 26:1397–1415. DOI: https://doi.org/10.1002/joc.1318

    Article  Google Scholar 

  • IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to Different COordinated Regional Climate Downscaling EXperiment (CORDEX) Regions. Atmosphere 3(4):181–199. https://doi.org/10.3390/atmos3010181

    Article  Google Scholar 

  • Kirchmeier-Young MC, Zwiers FW, Gillett NP (2017) Attribution of extreme events in Arctic Sea ice extent. J Clim 30(2):553–571. https://doi.org/10.1175/JCLI-D-16-0412.1

    Article  Google Scholar 

  • Lehner F, Deser C, Maher N, Marotzke J, Fischer EM, Brunner L, Knutti R, Hawkins E (2020) Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6.\. Earth Sys Dyn 11:491–508. doi:https://doi.org/10.5194/esd-11-491-2020

    Article  Google Scholar 

  • Li S, Otto FEL, Harrington LJ, Sparrow SN, Wallom DC (2020) A pan-South-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5°C warming. Environ Res Lett 15:054005

    Article  Google Scholar 

  • Maraun D, Widmann M, Gutierrez JM, Kotlarski S, Chandler RE, Hertig E, Wibig J, Huth R, Wilcke RAI (2015) VALUE—a framework to validate downscaling approaches for climate change studies. Earth’s Future 3(1):1–14. https://doi.org/10.1002/2014EF0002 59

    Article  Google Scholar 

  • Maraun D, Widmann M (2018) Statistical Downscaling and Bias Correction for Climate Research. Cambridge University Press. London. ISBN 1107066050

  • Menéndez CG, de Castro M, Boulanger JP, D’Onofrio A, Sanchez E, Sörensson A et al (2010) Downscaling extreme month-long anomalies in southern South America. Clim Change 98:379–403. https://doi.org/10.1007/s10584-009-9738-4

    Article  Google Scholar 

  • Mueller WA et al (2018) A high-resolution version of the Max Planck Institute Earth System Model MPI‐ESM1.2‐HR. J Adv Model EarthSyst 10:1383–1413. doi:https://doi.org/10.1029/2017MS001217

    Article  Google Scholar 

  • Olmo ME, Bettolli ML (2021b) Statistical downscaling of daily precipitation over southeastern South America: assessing the performance in extreme events. Int J Climatol 42(2):1283–1302. DOI:https://doi.org/10.1002/joc.7303

  • Olmo ME, Bettolli ML (2021a) Extreme daily precipitation in southern South America: statistical characterization and circulation types using observational datasets and regional climate models. Clim Dyn 57:895–916. https://doi.org/10.1007/s00382-021-05748-2

  • Olmo M, Bettolli ML, Rusticucci M (2020) Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: spatial variability and trends over southern South America. Weather and Climate Extremes 29:100267. https://doi.org/10.1016/j.wace.2020.100267

    Article  Google Scholar 

  • Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Weather Rev 144:2351–2374

    Article  Google Scholar 

  • Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid D, Hoffmann P, Nam C, Kotova L, Jacob D (2019) Evaluation of new CORDEX simulations using an updated Köppen-Trewartha climate classification. Atmosphere 10(11):726. https://doi.org/10.3390/atmos10110726

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. https://doi.org/10.1002/wcc.8

    Article  Google Scholar 

  • San Martín D, Manzanas R, Brands S, Herrera S, Gutiérrez JM (2017) Reassessing model uncertainty for regional projections of precipitation with an ensemble of statistical downscaling methods. J Clim 30:203–223. https://doi.org/10.1175/JCLI-D-16-0366.1

    Article  Google Scholar 

  • Solman SA, Bettolli ML, Doyle ME, Olmo ME, Feijoo M, Martínez D, Blazquez J, Balmaceda-Huarte R (2021) Evaluation of multiple downscaling tools for simulating extreme precipitation events over southeastern South America: a case study approach. Clim Dyn 57:1241–1264. https://doi.org/10.1007/s00382-021-05770-4

  • Sulca J, Vuille M, Timm OE, Dong B, Zubieta R (2021) Empirical–Statistical Downscaling of Austral Summer Precipitation over South America, with a Focus on the Central Peruvian Andes and the Equatorial Amazon Basin. J Appl Meteorol Climatology 60(1):65–85

    Article  Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M et al (2019) The Canadian earth system model version 5 (CanESM5.0.3). Geoscientific Model Development Discussions 5:1–68. https://doi.org/10.5194/gmd-2019-177

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  • Teichmann C, Jacob D, Remedio AR et al (2020) Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim Dyn 57:1269–1292. https://doi.org/10.1007/s00382-020-05494-x

  • Torres RR, Benassi RB, Martins FB, Lapola DM (2021) Projected impacts of 1.5 and 2 C global warming on temperature and precipitation patterns in South America. Int J Climatol 1–15. https://doi.org/10.1002/joc.7322

  • Timbal B, Fernandez E, Li Z (2009) Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ Model Softw 24:341–358

    Article  Google Scholar 

  • Varuolo-Clarke AM, Smerdon JE, Williams AP, Seager R (2021) Gross Discrepancies between Observed and Simulated Twentieth-to-Twenty-First-Century Precipitation Trends in Southeastern South America. J Clim 34(15):6441–6457. https://doi.org/10.1175/JCLI-D-20-0746.1

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. DOI:https://doi.org/10.1007/s00382-011-1259-y

  • Volodin EM, Mortikov EV, Kostrykin SV, Galin VY, Lykossov VN, Gritsun AS, Diansky NA, Gusev AV, Iakovlev NG (2017) Simulation of the present day climate with the climate model INMCM5. Clim Dyn V49:3715. https://doi.org/10.1007/s00382-017-3539-7

    Article  Google Scholar 

  • Vörösmarty CJ, de Guenni LB, Wolheim WM, Pellerin B, Bjerklie D, Cardoso M, D’Almeida C, Green P, Colon L (2013) Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America. Phil Trans R Soc A 371:20120408. https://doi.org/10.1098/rsta.2012.0408

    Article  Google Scholar 

  • Vrac M, Stein ML, Hayhoe K, Liang XZ (2007) A general method for validating statistical downscaling methods under future climate change. Geophys Res Lett 34:L18701. doi:https://doi.org/10.1029/2007GL030295

    Article  Google Scholar 

  • Vu T, Aribarg T, Supratid S, Raghavan S, Liong SY (2015) Statistical downscaling rainfall using artificial neural network: significantly wetter Bangkok? 126. Theoretical and Applied Climatology 126:453–467. https://doi.org/10.1007/s00704-015-1580-1

  • Wang F, Tian D, Lowe L, Kalin L, Lehrter J (2021) Deep learning for daily precipitation and temperature downscaling. Water Resour Res 57(4):e2020WR029308. https://doi.org/10.1029/2020WR029308.

  • Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Buenos Aires 2018-20020170100117BA, 20020170100357BA and the ANPCyT PICT-2018-02496 and PICT 2019–02933 projects. The authors acknowledge the WCRP CMIP5 and CMIP6 and CORDEX for producing and making available the model outputs used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olmo ME.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ME, O., Balmaceda-Huarte, R. & Bettolli, M. Multi-model ensemble of statistically downscaled GCMs over southeastern South America: historical evaluation and future projections of daily precipitation with focus on extremes. Clim Dyn 59, 3051–3068 (2022). https://doi.org/10.1007/s00382-022-06236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06236-x

Keywords

Navigation