Skip to main content

Advertisement

Log in

Evaluation of CMIP5 climate model projections for surface wind speed over the Indian Ocean region

  • Published:
Climate Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Global climate model (GCM) simulations of coupled model inter-comparison project phase 5 are being widely used for projections of the future climate change. The present study systematically evaluated the future simulations performed under four contrasting representative concentration pathway (RCP) scenarios obtained from 35 GCMs. The current wind climate (2006–2016) in GCM simulations have been assessed relative to merged altimetry derived wind speed. Skill assessment of the GCMs in representing the mean variability was investigated in detail using the Taylor’s skill score and thereby converging to a suite of best-performing models was selected. Multi-model mean (MMM) corresponding to four RCP scenarios were constructed from ACCESS1.0, CanESM2, CMCC-CMS, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, MPI-ESM-MR, MIROC-ESM, MRI-CGCM3 and NorESM1-M. The MMM wind climate estimated from these groups of models tend to perform better than individual models with significant improvements seen over most of the Indian Ocean (IO) region. The MMM skill score obtained from the four RCP scenarios were found to be similar, as the radiative forcing in these climate model experiments do not vary significantly for the recent decades. Significant changes in wind climate projections with reference to the historical period (1993–2005) are observed in the northern IO region, the zonal band of 30°S and region south of 40°S. Future projected changes in surface wind are found to be moderate for the 2026–2045 periods and the patterns in wind speed climate would be significantly changed by greenhouse gas forcing by end of the twenty-first century. The variability associated with sea level pressure, surface air temperature and sea surface temperature explains the projected changes in surface wind field under anthropogenic global warming scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, Jones C, Jung M, Myneni R, Zhu Z (2013) Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J Clim 26(18):6801–6843

    Google Scholar 

  • Annamalai H, Taguchi B, McCreary JP, Nagura M, Miyama T (2017) Systematic errors in south Asian monsoon simulation: importance of Equatorial Indian Ocean processes. J Clim 30:8159–8178

    Google Scholar 

  • Ashrit R, Kitoh A, Yukimoto S (2005) Transient response of ENSO-monsoon teleconnection in MRI-CGCM2.2 climate change simulations. J Meteorol Soc Jpn Ser II 83:273–291

    Google Scholar 

  • Bayr T, Dommenget D (2013) The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes. J Clim 26:1387–1402

    Google Scholar 

  • Bollasina M, Nigam S (2009) Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Clim Dyn 33(7–8):1017. https://doi.org/10.1007/s00382-008-0477-4

    Article  Google Scholar 

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26(7):2279–2287

    Google Scholar 

  • Bourassa M, Stoffelen A, Bonekamp H, Chang P, Chelton D, Courtney J, Edson R, Figa J, He Y, Hersbach H (2010) Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. In: Proceedings of the ‘OceanObs’09: sustained ocean observations and information for society’. Conference vol 2. https://doi.org/10.5270/oceanobs09.cwp.08

  • Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi A, Moura AD (2008) The PIRATA program: history, accomplishments, and future directions. Bull Am Meteorol Soc 89(8):1111–1126

    Google Scholar 

  • Brauch HG, Spring UO, Grin J, Mesjasz C, Kameri-Mbote P, Behera NC, Chourou B, Krummenacher H (2009) Facing global environmental change: environmental, human, energy, food, health and water security concepts. Springer, 1544 pp. https://doi.org/10.1007/978-3-540-68488-6

    Google Scholar 

  • Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959

    Google Scholar 

  • Casas-Prat M, Wang X, Swart N (2018) CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model 123:66–85

    Google Scholar 

  • Chowdhury P, Behera MR (2018) Evaluation of CMIP5 and CORDEX derived wave climate in Indian Ocean. Clim Dyn 52(7–8):4463–4482. https://doi.org/10.1007/s00382-018-4391-0

    Article  Google Scholar 

  • Chung E-S, Soden BJ (2015) An assessment of methods for computing radiative forcing in climate models. Environ Res Lett 10(7):074004. https://doi.org/10.1088/1748-9326/10/7/074004

    Article  Google Scholar 

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. U.S. Climate Change Science Program, synthesis and assessment product 2.1a, July 2007, p 164

  • Curry JA, Bentamy A, Bourassa MA, Bourras D, Bradley EF, Brunke M, Castro S, Chou SH, Clayson CA, Emery WJ, Eymard L, Cairall CW, Kubota M, Lin B, Perrie W, Reeder RA, Renfrew IA, Rossow WB, Schulz J, Smith SR, Webster PJ, Wick GA, Zeng X (2004) SEAFLUX. Bull Am Meteorol Soc 85:409–424

    Google Scholar 

  • De Souza K, Kituyi E, Harvey B, Leone M, Murali KS, Ford JD (2015) Vulnerability to climate change in three hot spots in Africa and Asia: key issues for policy-relevant adaptation and resilience-building research. Reg Environ Change 15(5):747–753

    Google Scholar 

  • Dong F, Li Y, Wang B, Huang W, Shi Y, Dong W (2016) Global air–sea CO2 flux in 22 CMIP5 models: multiyear mean and inter-annual variability. J Clim 29(7):2407–2431

    Google Scholar 

  • Evan A (2018) Surface winds and dust biases in climate models. Geophys Res Lett 45(2):1079–1085

    Google Scholar 

  • Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Energy J 27:343–353

    Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31(1):429–467

    Google Scholar 

  • Gilhousen DB (1987) A field evaluation of NDBC moored buoy winds. J Atmos Ocean Technol 4(1):94–104

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Google Scholar 

  • Goswami BN, Xavier PK (2005) Dynamics of “internal” interannual variability of the Indian summer monsoon in a GCM. J Geophys Res Atmos 110:D24104. https://doi.org/10.1029/2005JD006042

    Article  Google Scholar 

  • Goswami BN, Chakravorty S (2017) Dynamics of the Indian summer monsoon climate, Oxford research encyclopedia of climate. Science. https://doi.org/10.1093/acrefore/9780190228620.013.613

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445

    Google Scholar 

  • Gupta N, Bhaskaran PK, Dash MK (2015) Recent trends in wind-wave climate for the Indian Ocean. Curr Sci 108(12):2191–2201

    Google Scholar 

  • Hauser D, Tison C, Amiot T, Delaye L, Mouche A, Guitton G, Aouf L, Castillan P (2016) CFOSAT: a new Chinese–French satellite for joint observations of ocean wind vector and directional spectra of ocean waves. In: Proceedings SPIE. Remote sensing of the oceans and inland waters: techniques, applications, and challenges, April 2016. International Society for Optics and Photonics, vol 9878, New Delhi, India. https://doi.org/10.1117/12.2225619

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1108

    Google Scholar 

  • He C, Zhou T (2015) Responses of the western North Pacific subtropical high to global warming under RCP4. 5 and RCP8. 5 scenarios projected by 33 CMIP5 models: the dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J Clim 28(1):365–380

    Google Scholar 

  • Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013a) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3(5):471–476

    Google Scholar 

  • Hemer MA, Katzfey J, Trenham CE (2013b) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245

    Google Scholar 

  • Hijioka Y, Matsuoka Y, Nishimoto H, Masui T, Kainuma M (2008) Global GHG emission scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108

    Google Scholar 

  • Huang RX, Wang W, Liu LL (2006) Decadal variability of wind-energy input to the world ocean. Deep Sea Res Part II 53(1–2):31–41

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, 1535 pp

  • Jain S, Salunke P, Mishra SK, Sahany S (2018) Performance of CMIP5 models in the simulation of Indian summer monsoon. Theoret Appl Climatol. https://doi.org/10.1007/s00704-018-2674-3

    Article  Google Scholar 

  • Jayasankar C, Rajendran K, Surendran S (2018) Monsoon climate change projection for the orographic west coast of India using high resolution nested dynamical downscaling model. J Geophys Res Atmos. https://doi.org/10.1029/2018JD028677

    Article  Google Scholar 

  • Joshi MM, Gregory JM, Webb MJ, Sexton DM, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465

    Google Scholar 

  • Kitoh A, Yukimoto S, Noda A, Motoi T (1997) Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. J Meteorol Soc Jpn Ser II 75:1019–1031

    Google Scholar 

  • Kodra E, Ghosh S, Ganguly AR (2012) Evaluation of global climate models for Indian monsoon climatology. Environ Res Lett 7(1):014012. https://doi.org/10.1088/1748-9326/7/1/014012

    Article  Google Scholar 

  • Le Quéré C, Andres RJ, Boden T, Conway T, Houghton RA, House JI, Marland G, Peters GP, Van der Werf G, Ahlström A (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5(2):1107–1157

    Google Scholar 

  • Lee J-Y, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42(1–2):101–119

    Google Scholar 

  • Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim Dyn 41(1):155–172

    Google Scholar 

  • Li X, Ting M, Li C, Henderson N (2015) Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Clim 28(10):4107–4125

    Google Scholar 

  • Li G, Xie S-P, Du Y, Luo Y (2016) Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the warming pattern in CMIP5 multi-model ensemble. Clim Dyn 47(12):3817–3831

    Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436

    Google Scholar 

  • Lutz AF, ter Maat HW, Biemans H, Shrestha AB, Wester P, Immerzeel WW (2016) Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int J Climatol 36(12):3988–4005

    Google Scholar 

  • Ma J, Xie S-P (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26:2482–2501

    Google Scholar 

  • Ma J, Yu JY (2014) Paradox in South Asian summer monsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys Res Lett 41:2934–2940

    Google Scholar 

  • Ma J, Foltz GR, Soden BJ, Huang G, He J, Dong C (2016) Will surface winds weaken in response to global warming? Environ Res Lett 11(12):124012

    Google Scholar 

  • Marathayil D, Turner A, Shaffrey L, Levine R (2013) Systematic winter sea-surface temperature biases in the northern Arabian Sea in HiGEM and the CMIP3 models. Environ Res Lett 8(1):014028

    Google Scholar 

  • McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT (1998) The tropical ocean-global atmosphere observing system: a decade of progress. J Geophys Res Oceans 103(C7):14169–14240

    Google Scholar 

  • McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty V, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90(4):459–480

    Google Scholar 

  • Meijers A (2014) The Southern Ocean in the coupled model intercomparison project phase 5. Philos Trans R Soc A Math Phys Eng Sci 372:20130296

    Google Scholar 

  • Mignone BK, Gnanadesikan A, Sarmiento JL, Slater RD (2006) Central role of Southern Hemisphere winds and eddies in modulating the oceanic uptake of anthropogenic carbon. Geophys Res Lett. https://doi.org/10.1029/2005GL024464

    Article  Google Scholar 

  • Mora C et al (2013) The projected timing of climate departure from recent variability. Nature 502:183

    Google Scholar 

  • Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projection of extreme wave climate change under global warming. Hydrol Res Lett 4:15–19

    Google Scholar 

  • Morim J, Hemer M, Cartwright N, Strauss D, Andutta F (2018) On the concordance of 21st century wind-wave climate projections. Glob Planet Change 167:160–171

    Google Scholar 

  • Mote P, Rupp D, Vano J, Gilles N (2015) Future climate. Institute for Natural Resources, Oregon. http://inr.oregonstate.edu/ww2100/analysis-topic/future-climate. Accessed 14 June 2018

  • Nepal S, Shrestha AB (2015) Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature. Int J Water Resour Dev 31(2):201–218

    Google Scholar 

  • Parvathi V, Suresh I, Lengaigne M, Izumo T, Vialard J (2017) Robust projected weakening of winter monsoon winds over the Arabian Sea under climate change. Geophys Res Lett 44(19):9833–9843

    Google Scholar 

  • Patra A, Bhaskaran PK (2017) Temporal variability in wind–wave climate and its validation with ESSO-NIOT wave atlas for the head Bay of Bengal. Clim Dyn 49(4):1271–1288

    Google Scholar 

  • Pincus R, Batstone CP, Hofmann RJP, Taylor KE, Glecker PJ (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res Atmos. https://doi.org/10.1029/2007jd009334

    Article  Google Scholar 

  • Queffeulou P, Ardhuin F, Lefèvre J-M (2011) Wave height measurements from altimeters: validation status & applications. Proc. OSTST Meeting, San Diego, CA

  • Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74(7):887–935

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109(1–2):33. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38(11):2379–2413

    Google Scholar 

  • Rosmorduc V, Benveniste J, Bronner E, Dinardo S, Lucas BM, Niejmeier S, Picot N, Breebaart L, Earith D (2010) Basic radar altimetry toolbox & tutorial. In: Proceedings of ‘ESA Living Planet Symposium’, Bergen, Norway, 2010

  • Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami B (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land–sea thermal gradient. Nat Commun 6:7423

    Google Scholar 

  • Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler J (2006) The Southern Hemisphere westerlies in a warming world: propping open the door to the deep ocean. J Clim 19(24):6382–6390

    Google Scholar 

  • Sandeep S, Ajayamohan R, Boos WR, Sabin T, Praveen V (2018) Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc Natl Acad Sci 115:2681–2686

    Google Scholar 

  • Sanford T, Frumhoff PC, Luers A, Gulledge J (2014) The climate policy narrative for a dangerously warming world. Nat Clim Change 4:164

    Google Scholar 

  • Scherrer SC (2011) Present-day interannual variability of surface climate in CMIP3 models and its relation to future warming. Int J Climatol 31(10):1518–1529

    Google Scholar 

  • Schneider B, Bopp L, Gehlen M, Segschneider J, Frölicher T, Cadule P, Friedlingstein P, Doney SC, Behrenfeld MJ, Joos F (2008) Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences 5(2):597–614

    Google Scholar 

  • Sharmila S, Joseph S, Sahai A, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

    Google Scholar 

  • Smith SJ, Wigley T (2006) Multi-gas forcing stabilization with Minicam. Energy J 27:373–391

    Google Scholar 

  • Son SW, Gerber E, Perlwitz J, Polvani LM, Gillett NP, Seo KH, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Brühl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Jöckel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssdre H, Tian W, Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res Atmos 115(D3):1–18. https://doi.org/10.1029/2010JD014271

    Article  Google Scholar 

  • Sooraj K, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252

    Google Scholar 

  • Sperber K, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41(9–10):2711–2744

    Google Scholar 

  • Swart N, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39:L16711. https://doi.org/10.1029/2012GL052810

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Google Scholar 

  • Thackeray CW, Fletcher CG, Derksen C (2015) Quantifying the skill of CMIP5 models in simulating seasonal albedo and snow cover evolution. J Geophys Res Atmos 120(12):5831–5849

    Google Scholar 

  • Thomas BR, Kent EC, Swail VR (2005) Methods to homogenize wind speeds from ships and buoys. Int J Climatol 25(7):979–995

    Google Scholar 

  • Van den Hurk B et al (2016) LS3MIP (v1. 0) contribution to CMIP6: the land surface, snow and soil moisture model intercomparison project-aims, setup and expected outcome. Geosci Model Dev 9:2809–2832

    Google Scholar 

  • van Vuuren DP, Weyant J, de la Chesnaye F (2006) Multi-gas scenarios to stabilize radiative forcing. Energy Econ 28(1):102–120

    Google Scholar 

  • van Vuuren DP, Den Elzen MG, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81(2):119–159

    Google Scholar 

  • Wang XL, Zwiers FW, Swail VR (2004) North Atlantic ocean wave climate change scenarios for the twenty-first century. J Clim 17(12):2368–2383

    Google Scholar 

  • Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4(3):201

    Google Scholar 

  • Wang XL, Feng Y, Swail VR (2015) Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights. J Geophys Res Oceans 120(5):3859–3871

    Google Scholar 

  • Weigel AP, Liniger M, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc 134(630):241–260

    Google Scholar 

  • Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324(5931):1183–1186

    Google Scholar 

  • Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Eric Freeman J, Berry DI, Brohan P, Kent EC, Reynolds RW, Smith SR (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31(7):951–967

    Google Scholar 

  • Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Google Scholar 

  • Zickfeld K, Levermann A, Morgan MG, Kuhlbrodt T, Rahmstorf S, Keith DW (2007) Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Clim Change 82(3–4):235–265

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Department of Science and Technology (DST), Government of India for the financial support. This study was conducted as a part of the Centre of Excellence (CoE) in Climate Change studies established at IIT Kharagpur funded by DST, Government of India. This study is a part of the project ‘Wind-Waves and Extreme Water Level Climate Projections for East Coast of India’ conducted under the CoE in Climate Change at IIT Kharagpur. The authors also acknowledge the World Climate Research Program’s Working Group on Coupled Modelling, for providing CMIP5 multi-model data and IFREMER/CERSAT for making available quality checked altimeter datasets. All the CMIP5 model outputs were downloaded from the URL link https://esgf-node.llnl.gov/search/esgf-llnl/ CMIP5 data repository.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad K. Bhaskaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, S., Bhaskaran, P.K. Evaluation of CMIP5 climate model projections for surface wind speed over the Indian Ocean region. Clim Dyn 53, 5415–5435 (2019). https://doi.org/10.1007/s00382-019-04874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04874-2

Keywords

Navigation