Skip to main content

Advertisement

Log in

Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean–atmosphere coupling

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The impact of the Atlantic multidecadal variability (AMV) on the wintertime atmosphere circulation is investigated using three different configurations of the Community Atmospheric Model version 5 (CAM5). Realistic SST and sea ice anomalies associated with the AMV in observations are prescribed in CAM5 (low-top model) and WACCM5 (high-top model) to assess the dependence of the results on the representation of the stratosphere. In a third experiment, the role of ocean–atmosphere feedback is investigated by coupling CAM5 to a slab-ocean model in which the AMV forcing is prescribed through oceanic heat flux anomalies. The three experiments give consistent results concerning the response of the NAO in winter, with a negative NAO signal in response to a warming of the North Atlantic ocean. This response is found in early winter when the high-top model is used, and in late winter with the low-top model. With the slab-ocean, the negative NAO response is more persistent in winter and shifted eastward over the continent due to the damping of the atmospheric response over the North Atlantic ocean. Additional experiments suggest that both tropical and extratropical SST anomalies are needed to obtain a significant modulation of the NAO, with small influence of sea ice anomalies. Warm tropical SST anomalies induce a northward shift of the ITCZ and a Rossby-wave response that is reinforced in the mid-latitudes by the extratropical SST anomalies through eddy–mean flow interactions. This modeling study supports that the positive phase of the AMV promotes the negative NAO in winter, while illustrating the impacts of the stratosphere and of the ocean–atmosphere feedbacks in the spatial pattern and timing of this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ba J, Keenlyside NS, Latif M, Park W, Ding H, Lohmann K, Mignot J, Menary M, Ottera OH, Wouters B, SalasyMelia D, Oka A, Bellucci A, Volodin E (2014) A multi-model comparison for Atlantic multidecadal variability. Clim Dyn. doi:10.1007/s00382-014-2056-1

    Google Scholar 

  • Barsugli JJ, Battisti DS (1998) The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J Atmos Sci 55:477–493

    Article  Google Scholar 

  • Bjerknes J (1964) Atlantic air–sea interaction. Adv Geophys 10:1–82

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. doi:10.1038/nature10946

    Google Scholar 

  • Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27:767–770

    Article  Google Scholar 

  • Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22(859–881):17

    Google Scholar 

  • Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee Y-Y, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son S-W, Toohey M, Wilcox K, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118:2494–2505. doi:10.1002/jgrd.50125

    Article  Google Scholar 

  • Chen H, Schneider EK, Zhu Z (2015) Mechanisms of internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean in a coupled GCM. DOI, Clim Dyn. doi:10.1007/s00382-015-2660-8

    Google Scholar 

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Article  Google Scholar 

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972

    Article  Google Scholar 

  • Davini P, von Hardenberg J, Corti S (2015) Tropical origin for the impacts of the Atlantic Multidecadal Variability on the Euro-Atlantic climate. Environ Res Lett 10:094010. doi:10.1088/1748-9326/10/9/094010

    Article  Google Scholar 

  • Day JJ, Hargreaves JC, Annan JD, Abe-Ouchi A (2012) Sources of multi-decadal variability in Arctic sea ice extent. Environ Res Lett 7:034011. doi:10.1088/1748-9326/7/3/034011

    Article  Google Scholar 

  • Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:141–157

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767

    Article  Google Scholar 

  • Drevillon M, Cassou C, Terray L (2003) Model study of the North Atlantic region atmospheric response to autumn tropical atlantic sea-surface-temperature anomalies. Q J R Meteorol Soc 129:2591–2611. doi:10.1256/qj.02.17

    Article  Google Scholar 

  • Frankignoul C (1985) Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev Geophys 23(4):357–390. doi:10.1029/RG023i004p00357

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2010) Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J Geophys Res 115:D20116. doi:10.1029/2010JD014181

    Article  Google Scholar 

  • Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Clim Dyn 40(9–10):2311–2330

    Article  Google Scholar 

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys Res Lett 31:L12205. doi:10.1029/2004GL019932

    Article  Google Scholar 

  • Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499:464–467

    Article  Google Scholar 

  • Haarsma R, Hazeleger JW (2007) Extratropical atmospheric response to equatorial Atlantic cold tongue anomalies. J Clim 20:2076–2091

    Article  Google Scholar 

  • Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–659

    Article  Google Scholar 

  • Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou TJ (2010) Climate impacts of recent multidecadal changes in atlantic ocean sea surface temperature: a multimodel comparison. Clim Dyn 34:1041–1058

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Hurrell J, van Loon WH (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn. doi:10.1007/s00382-013-1712-1

    Google Scholar 

  • Keenlyside NS, Omrani N-E (2014) Has a warm North Atlantic contributed to recent European cold winters? Environ Res Lett 9:061001

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1986

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242

    Article  Google Scholar 

  • Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8000 years. Nat Commun 2:1–8

    Article  Google Scholar 

  • Knudsen MF, Jacobsen BH, Seidenkrantz M-S, Olsen J (2014) Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nat Commun 5:3323. doi:10.1038/ncomms4323

    Article  Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001. doi:10.1029/2004RG000166

    Article  Google Scholar 

  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256

    Article  Google Scholar 

  • Kwon Y-O, Deser C, Cassou C (2011) Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Clim Dyn. doi:10.1007/s00382-010-0764-8

    Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci USA. doi:10.1073/pnas.1118734109

    Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3, Part I: Main features and storm-track characteristics of the response. J Clim 17:857–876

    Article  Google Scholar 

  • Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404

    Article  Google Scholar 

  • Msadek R, Frankignoul C, Li L (2011) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn 36:1255–1276

    Article  Google Scholar 

  • Neale RB et al (2011) Description of the NCAR Community Atmosphere Model (CAM5). National Center for Atmospheric Research Tech. Rep. NCAR/TN-486+STR

  • Okumura Y, Xie SP, Numaguti A, Tanimoto Y (2001) Tropical Atlantic air–sea interaction and its influence on the NAO. Geophys Res Lett 28:1507–1510

    Article  Google Scholar 

  • Okumura YM, Deser C, Hu A, Timmermann A, Xie S-P (2009) North Pacific climate response to freshwater forcing in the subarctic North Atlantic: oceanic and atmospheric pathways. J Clim 22:1424–1445

    Article  Google Scholar 

  • Omrani NE, Keenlyside NS, Bader JR, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim Dyn 42:649–663

    Article  Google Scholar 

  • Omrani NE, Bader J, Keenlyside NS, Manzini E (2015) Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Clim Dyn. doi:10.1007/s00382-015-2654-6

    Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Park S, Deser C, Alexander MA (2005) Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J Clim 18:4582–4599

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014a) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ Res Lett 9(3):034018

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014b) Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J Clim 27:244–264

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2015) The role of sea surface temperature, Arctic sea ice and Siberian snow in forcing the atmospheric circulation in winter of 2012–2013. Clim Dyn. doi:10.1007/s00382-014-2368-1

    Google Scholar 

  • Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the Siberian snow influence on the northern annular mode. J Clim 25:592–607

    Article  Google Scholar 

  • Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim 12:1393–1408

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S, Hoerling MP (2005) Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses. J Clim 18:480–496. doi:10.1175/JCLI-3270.1

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Richter JH, Sassi F, Garcia RR (2010) Toward a physically based gravity wave source parameterization in a general circulation model. J Atmos Sci 67(1):136–156. doi:10.1175/2009JAS3112.1

    Article  Google Scholar 

  • Ruprich-Robert Y, Cassou C (2014) Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Clim Dyn. doi:10.1007/s00382-014-2176-7

    Google Scholar 

  • Sato K, Inoue J, Watanabe M (2014) Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ Res Lett 9:084009

    Article  Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726

    Article  Google Scholar 

  • Smith KL, Neely RR, Marsh DR, Polvani LM (2014) The specified chemistry whole atmosphere community climate model (SC-WACCM). J Adv Model Earth Syst 6:883–901. doi:10.1002/2014MS000346

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907. doi:10.1175/JCLI4038.1

    Article  Google Scholar 

  • Sutton R, Mathieu PP (2002) Response of the atmosphere–ocean mixed layer system to anomalous ocean heat flux convergence. Q J R Meteorol Soc 128:1259–1275

    Article  Google Scholar 

  • Terray L, Cassou C (2002) Tropical Atlantic sea surface temperature forcing of quasi-decadal climate variability over the North Atlantic-European region. J Clim 15:3170–3187

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern Hemisphere interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi:10.1029/2011GL048712

    Article  Google Scholar 

  • Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys. doi:10.1007/s10712-014-9284-0

    Google Scholar 

  • Wallace JM, Held IM, Thompson DWJ, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343(6172):729–730. doi:10.1126/science.343.6172.729

    Article  Google Scholar 

  • Walsh JE, Chapman WL (2001) 20th-century sea–ice variations from observational data. Ann Glaciol 33:444–448

    Article  Google Scholar 

  • Wang C, Zhang L (2013) Multidecadal ocean temperature and salinity variability in the tropical North Atlantic: linking with the AMO, AMOC, and subtropical cell. J Clim 26:6137–6162. doi:10.1175/JCLI-D-12-00721.1

    Article  Google Scholar 

  • Wang C, Xie S-P, Carton JA (2004) A global survey of ocean–atmosphere interaction and climate variability. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, D.C. doi:10.1029/147GM01

    Google Scholar 

  • Wang C, Dong S, Evan AT, Foltz GR, Lee S-K (2012) Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J Clim 25:5404–5415

    Article  Google Scholar 

  • Watson PAG, Gray LJ (2014) How does the quasi-biennial oscillation affect the stratospheric polar vortex? J Atmos Sci 71:391–409. doi:10.1175/JAS-D-13-096.1

    Article  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie SP, Carton JA (eds) Earth climate: the ocean-atmosphere interaction. Geophysical monograph series 147. AGU, Washington, pp 121–142

    Chapter  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett. doi:10.1029/2006GL026267

    Google Scholar 

  • Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulation. J Geophys Res Oceans 118:5772–5791. doi:10.1002/jgrc.20390

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF Grant AGS-1407360. We acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s CISL, sponsored by the NSF. We are grateful to Noel Keenlyside, Nour-Eddine Omrani, Clara Deser and Lantao Sun for valuable discussions that have helped us better interpret the results of our experiments. Thanks are also due to Yi-Hui Wang for testing CAM with the slab ocean configuration. We finally thank two anonymous reviewers and the editor for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Peings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peings, Y., Magnusdottir, G. Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean–atmosphere coupling. Clim Dyn 47, 1029–1047 (2016). https://doi.org/10.1007/s00382-015-2887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2887-4

Keywords

Navigation