Skip to main content

Advertisement

Log in

Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial–temporal analyses of rainfall have been studied by using 107 (1901–2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bollasina MA, Yi M, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the south Asian summer monsoon. Science 334(6055):502–505

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:F03019

    Google Scholar 

  • Bosilovich MG, Schubert SD, Rienecker M, Todling R, Suarez M, Bacmeister J, Gelaro R, Kim GK, Stajiner I, Chen J (2006) NASA’s modern era retrospective-analysis for research and applications. US CLIVAR Var 4:5–8

    Google Scholar 

  • Bosilovich MG, Chen J, Robertson FR, Adler RF (2008) Evaluation of global precipitation in reanalyses. J Appl Meteorol Climatol 47:2279–2299

    Article  Google Scholar 

  • Chelliah M, Ebisuzaki W, Weaver S, Kumar A (2011) Evaluating the tropospheric variability in National Centers for Environmental Prediction’s climate forecast system reanalysis. J Geophys Res 116:D17107

    Article  Google Scholar 

  • Cullather RI, Bosilovich MG (2011) The moisture budget of the polar atmosphere in MERRA. J Clim 24:2861–2879

    Article  Google Scholar 

  • Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res 114:D10109. doi:10.1029/2008JD010572

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisforda P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars CM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Ghosh S, Das D, Kao SH, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nat Clim Change 2(2):86–91

    Article  Google Scholar 

  • Guhatakurtha P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Clim 28:1453–1469

    Article  Google Scholar 

  • Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat A6:813–827

    Article  Google Scholar 

  • Kliest DT, Parrish DF, Derber JC, Treadon R, Errico RM, Yang R (2009) Improving incremental balance in the GSI 3DVAR analysis system. Mon Weather Rev 137:1046–1060

    Article  Google Scholar 

  • Kucharski F, Scaife AA, Yoo JH, Folland CK, Kinter J, Knight J, Fereday D, Fischer AM, Jin EK, Kroger J, Lau NC, Nakaegawa T, Nath MJ, Pegion P, Rozanov E, Schubert S, Sporyshev PV, Syktus J, Voldoire A, Yoon JH, Zeng N, Zhou T (2009) The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal time scale. Does GHG forcing play a role? Clim Dyn 33:615–627. doi:10.1007/s00382-008-0462-y

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119. doi:10.1126/science.1131152

    Article  Google Scholar 

  • Kutner M, Nachsteim CJ, Neter J (2004) Applied linear regression models, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Lacombe G, McCartney M (2014) Uncovering consistencies in Indian rainfall trends observed over the last half century. Clim Change 123:287–299

    Article  Google Scholar 

  • Lal M (2001) Climatic change—implications for India’s water resources. J Indian Water Resour Soc 21:101–119

    Google Scholar 

  • Lau WKM, Waliser DE (2005) Intraseasonal variability in the atmosphere-ocean climate system. Spinger, Berlin

    Google Scholar 

  • Lau WKM, Duane E, Waliser DE, Goswami BN (2012) South Asian monsoon: Intraseasonal variability in the atmosphere-ocean climate system. Spinger, Berlin Heidelberg, pp 21–72

    Book  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Mishra V, Dominguez F, Lettenmaier DP (2012) Urban precipitation extremes: how reliable are regional climate models? Geophys Res Lett. doi:10.1029/2011GL050658

    Google Scholar 

  • Mooley DA, Parthasarathy B (1984) Fluctuations in all-India summer monsoon rainfall during 1871–1978. Clim Change 6:287–301

    Article  Google Scholar 

  • O’leary DP (1990) On bounds for scaled projections and pseudo-inverse. Linear Algebra Appl 132:115–117

    Article  Google Scholar 

  • Onogi K, Koide H, Sakamoto M, Kobayashi S, Tsutsui J, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kato K, Ose T, Kadokura S, Wada K (2005) JRA-25: Japanese 25 year reanalysis—progress and status. Q J R Meteorol Soc 131:3259–3268

    Article  Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Rahman SH, Sengupta D, Ravichandran M (2009) Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J Geophys Res 114:D17113. doi:10.1029/2008JD011694

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91(3):296–306

    Google Scholar 

  • Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35:L18707. doi:10.1029/2008GL035143

    Article  Google Scholar 

  • Rajeevan M, Unnikrishnan CK, Preeth B (2012) Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Clim Dyn 38:2257–2274

    Article  Google Scholar 

  • Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32(6):533–540

    Article  Google Scholar 

  • Rao YP (1976) Southwest monsoon. Meteorological monogrpahs, synoptic meteorology 1/1976. India Meteorological Department, New Delhi

    Google Scholar 

  • Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woolen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang MH, Sela J, Iradell M, Treadon R, Kliest D, Delst PV, Keyser D, Derber J, Ek M, Meng M, Meng J, Wei H, Yang R, Lord S, Den Dool HV, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1072

    Article  Google Scholar 

  • Scargle JD (1982) Studies in astronomical time series analysis, II, statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC full data reanalysis version 6.0 at 2.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi:10.5676/DWD_GPCC/FD_M_V6_100

  • Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of 1968 ACM National Conference. New York, pp 517–524

  • Sinha Ray KC, Srivastava AK (1999) Is there any change in extreme events like droughts and heavy rainfall? Curr Sci 79(2):155–158

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Thapliyal V, Kulshreshtha SM (1991) Climate changes and trends over India. Mausam 42:333–338

    Google Scholar 

  • Turner A, Annamalai H (2012) Climate change and the south Asian summer monsoon. Nat Clim Change 2:587–595

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Florino M, Gibson JK, Hasler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Anderson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevaller F, Delthof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AO, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untach A, Vasiljevic D, Viterbo P, Woolen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(B):2961–3012

    Article  Google Scholar 

  • Wang W, Chen M, Kumar A (2010) An assessment of the CFS real time forecast. Weather Forecast 25:950–969

    Article  Google Scholar 

  • Webster PJ (1987) The elementary monsoon. In: Js Fein, Stephen PL (eds) Monsoons. Wiley, New York

    Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RT, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510

    Article  Google Scholar 

  • Xie SP, Xu H, Saji NH, Wang Y (2006) Role of narrow mountains in large-scale organization of asian monsoon convection. J Clim 19:3420–3429

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for asia based on a dense network of rain gauges. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00122.1

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of CFSR, ERA-Interim, JRA-25, and NASA-MERRA reanalysis data centers for the public access of their data via their webpages. Authors are thankful to APHRODITE and GPCP observational data centers. The authors are thankful to the India Meteorological Department (IMD) for providing the rainfall gridded datasets. The second author (SJ) acknowledges to UGC, New Delhi for providing the fellowship UGS-SVU Centre for MST Radar Applications during my course of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kishore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, P., Jyothi, S., Basha, G. et al. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends. Clim Dyn 46, 541–556 (2016). https://doi.org/10.1007/s00382-015-2597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2597-y

Keywords

Navigation