Skip to main content

Advertisement

Log in

Is there a stratospheric radiative feedback in global warming simulations?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The radiative impacts of the stratosphere in global warming simulations are investigated using abrupt CO2 quadrupling experiments of the Coupled Model Inter-comparison Project phase 5 (CMIP5), with a focus on stratospheric temperature and water vapor. It is found that the stratospheric temperature change has a robust bullhorn-like zonal-mean pattern due to a strengthening of the stratospheric overturning circulation. This temperature change modifies the zonal mean top-of-the-atmosphere energy balance, but the compensation of the regional effects leads to an insignificant global-mean radiative feedback (−0.02 ± 0.04 W m−2 K−1). The stratospheric water vapor concentration generally increases, which leads to a weak positive global-mean radiative feedback (0.02 ± 0.01 W m−2 K−1). The stratospheric moistening is related to mixing of elevated upper-tropospheric humidity, and, to a lesser extent, to change in tropical tropopause temperature. Our results indicate that the strength of the stratospheric water vapor feedback is noticeably larger in high-top models than in low-top ones. The results here indicate that although its radiative impact as a forcing adjustment is significant, the stratosphere makes a minor contribution to the overall climate feedback in CMIP5 models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews D et al (1987) Middle atmosphere dynamics. Academic Press, San Diego. p 489

  • Butchart N et al (2006) Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Clim Dyn 27:727–741. doi:10.1007/s00382-006-0162-4

    Article  Google Scholar 

  • Dessler AE, Schoeberl MR, Wang T, Davis SM, Rosenlof KH (2013) Stratospheric water vapor feedback. Proc Natl Acad Sci 110(45):18087–18091

    Article  Google Scholar 

  • Dessler AE, Schoeberl MR, Wang T, Davis SM, Rosenlof KH, Vernier J-P (2014) Variations of stratospheric water vapor over the past three decades. J Geophys Res Atmos 119:12588–12598. doi:10.1002/2014JD021712

    Article  Google Scholar 

  • Forster PMD, Shine KP (1999) Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling. Geophys Res Lett 26(21):3309–3312

    Article  Google Scholar 

  • Fueglistaler S et al (2014) Departure from Clausius–Clapeyron scaling of water entering the stratosphere in response to changes in tropical upwelling. J Geophys Res Atmos 119:1962–1972. doi:10.1002/2013JD020772

    Article  Google Scholar 

  • Gerber et al (2012) Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull Am Meteorol Soc 93:845–859

    Article  Google Scholar 

  • Gettelman A et al (2010) Multimodel assessment of the upper troposphere and lower stratosphere: tropics and global trends. J Geophys Res 115:D00M08. doi:10.1029/2009JD013638

    Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res Atmos 102:6831–6864

    Article  Google Scholar 

  • Huang Y (2013a) A simulated climatology of spectrally decomposed atmospheric infrared radiation. J Clim. doi:10.1175/JCLI-D-12-00438.1

    Google Scholar 

  • Huang Y (2013b) On the longwave climate feedbacks. J Clim 26(19):7603–7610

    Article  Google Scholar 

  • Huang Y, Zhang M (2014) The implication of radiative forcing and feedback for meridional energy transport. Geophys Res Lett. doi:10.1002/2013GL059079

    Google Scholar 

  • Huang Y, Ramaswamy V, Soden B (2007) An investigation of the sensitivity of the clear-sky outgoing longwave radiation to atmospheric temperature and water vapor. J Geophys Res 112:D05104. doi:10.1029/2005JD006906

    Google Scholar 

  • Joshi MM, Webb MJ et al (2010) Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model. Atmos Chem Phys 10(15):7161–7167

    Article  Google Scholar 

  • Li F, Austin J, Wilson RJ (2008) The strength of the Brewer–Dobson circulation in a changing climate: coupled chemistry-climate model simulations. J Clim 21:40–57

    Article  Google Scholar 

  • Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J Geophys Res Atmos. doi:10.1002/2013JD021403

    Google Scholar 

  • McClatchey RA, Fenn RW, Selby JE, Volz FE, Garing JS (1972) Optical properties of the atmosphere, 3rd edn, Air 599 Force Geophysical Laboratory Technical Report, AFCRL-72-0497, pp 80

  • Neale RB et al (2010) Description of the NCAR Community Atmosphere Model (CAM5.0). NCAR Tech. Rep. NCAR/TN-486 + STR, pp 268

  • Shell KM, Kiehl JT et al (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR’s Community Atmospheric Model. J Clim 21(10):2269–2282

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean–atmosphere models. J Clim 19:3354–3360

    Article  Google Scholar 

  • Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520

    Article  Google Scholar 

  • Son S-W, Polvani LM et al (2009) The impact of stratospheric ozone recovery on tropopause height trends. J Clim 22(2):429–445

    Article  Google Scholar 

  • Stuber N, Ponater M et al (2001) Is the climate sensitivity to ozone perturbations enhanced by stratospheric water vapor feedback? Geophys Res Lett 28(15):2887–2890

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ et al (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • WMO (1957) Definition of the tropopause. WMO Bull 6:136

    Google Scholar 

  • Zelinka M et al (2012) Computing and partitioning cloud feedbacks using cloud property histograms. Part I: cloud radiative kernels. J Clim 25:3715–3735. doi:10.1175/JCLI-D-11-00248.1

    Article  Google Scholar 

  • Zhang M, Huang Y (2014) Radiative forcing of quadrupling CO2. J Clim. doi:10.1175/JCLI-D-13-00535.1

    Google Scholar 

  • Zhou C, Dessler AE, Zelinka MD, Yang P, Wang T (2014) Cirrus feedback on interannual climate fluctuations. Geophys Res Lett. doi:10.1002/2014GL062095

    Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers whose comments helped improve the quality of the paper. Y. Huang and M.Z. are supported by a Discovery grant form the National Science and Engineering Research Council of Canada (RGPIN418305-13). Y.X. is supported by a postdoctoral fellowship of Fonds de recherché du Québec-Nature et technologies. Y.X. and Y. Hu are supported by the National Natural Science Foundation of China (41025018) and by the National Basic Research Program of China (973 Program, 2010CB428606). S.W.S. is supported by Korea Ministry of Environment as “Climate Change Correspondence Program”. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling for the CMIP5 model data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, M., Xia, Y. et al. Is there a stratospheric radiative feedback in global warming simulations?. Clim Dyn 46, 177–186 (2016). https://doi.org/10.1007/s00382-015-2577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2577-2

Keywords

Navigation