Skip to main content

Advertisement

Log in

The Child & Youth CompreHensIve Longitudinal Database for Deep Brain Stimulation (CHILD-DBS)

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Deep brain stimulation (DBS) is a common tool for the treatment of movement disorders in adults; however, it remains an emerging treatment modality in children with a growing number of indications, including epilepsy and dystonia. The Child & Youth CompreHensIve Longitudinal Database of DBS (CHILD-DBS) study aims to prospectively collect relevant data on quality of life (QoL), safety, efficacy, and long-term neurodevelopmental outcomes following DBS in children.

Methods

Data are collected and managed using the Research Electronic Data Capture (REDCap). This database aims to collect multicentre comprehensive and longitudinal clinical, QoL, imaging and electrophysiologic data for children under the age of 19 undergoing DBS.

Results

Both general and indication-specific measures are collected at baseline and at four time points postoperatively: 6 months, 1 year, 2 years, and 3 years. The database encompasses QoL metrics for children, including the PedsQL (Pediatric Quality of Life Inventory, generic), QOLCE (Quality of Life in Childhood Epilepsy Questionnaire, parent-rated), CHU 9D (Child Health Utility 9D), and KIDSCREEN. Caregiver clinical and QoL metrics, including QIDS (Quick Inventory of Depressive Symptomatology), GAD-7 (Generalized Anxiety Disorder 7-item scale), and CarerQoL-7D (The Care-related Quality of Life Instrument), are similarly prospectively collected. Healthcare resource utilization is also assessed before and after DBS. Lastly, stimulation parameters and radiographic and electrophysiologic data are collected within the database.

Conclusions

The development of the current prospective paediatric DBS database with carefully selected physical and psychosocial outcomes and assessments will complement existing efforts to enhance and facilitate multisite collaboration to further understand the role of DBS in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70:163–171

    PubMed  Google Scholar 

  2. Coubes P, Echenne B, Roubertie A, Vayssiere N, Tuffery S, Humbertclaude V, Cambonie G, Claustres M, Frerebeau P (1999) Treatment of early-onset generalized dystonia by chronic bilateral stimulation of the internal globus pallidusApropos of a case. Neurochirurgie 45:139–144

    CAS  PubMed  Google Scholar 

  3. Anderson WS, Lenz FA (2006) Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neurol 2:310–320

    PubMed  Google Scholar 

  4. DeLong M, Wichmann T (2012) Deep brain stimulation for movement and other neurologic disorders. Ann N Y Acad Sci 1265:1–8

    PubMed  PubMed Central  Google Scholar 

  5. Yu H, Neimat JS (2008) The treatment of movement disorders by deep brain stimulation. Neurotherapeutics 5:26–36

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Elkaim LM, Alotaibi NM, Sigal A, Alotaibi HM, Lipsman N, Kalia SK, Fehlings DL, Lozano AM, Ibrahim GM, North American Pediatric DBSC (2019) Deep brain stimulation for pediatric dystonia: a meta-analysis with individual participant data. Dev Med Child Neurol 61:49–56

    PubMed  Google Scholar 

  7. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, Group SS (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908

    PubMed  Google Scholar 

  8. Yan H, Toyota E, Anderson M, Abel TJ, Donner E, Kalia SK, Drake J, Rutka JT, Ibrahim GM (2018) A systematic review of deep brain stimulation for the treatment of drug-resistant epilepsy in childhood. J Neurosurg Pediatr 23:274–284

    PubMed  Google Scholar 

  9. Yan H, Snead C, Ibrahim GM (2019) Epilepsy surgery for children with severe developmental delay: an ethical double jeopardy. Epilepsy Behav 90:287–290

    PubMed  Google Scholar 

  10. Valentin A, Garcia Navarrete E, Chelvarajah R, Torres C, Navas M, Vico L, Torres N, Pastor J, Selway R, Sola RG, Alarcon G (2013) Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia 54:1823–1833

    PubMed  Google Scholar 

  11. Velasco F, Velasco M, Ogarrio C, Fanghanel G (1987) Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia 28:421–430

    CAS  PubMed  Google Scholar 

  12. Velasco F, Velasco M, Jimenez F, Velasco AL, Brito F, Rise M, Carrillo-Ruiz JD (2000) Predictors in the treatment of difficult-to-control seizures by electrical stimulation of the centromedian thalamic nucleus. Neurosurgery 47:295–304 discussion 304-295

    CAS  PubMed  Google Scholar 

  13. Velasco AL, Velasco F, Jimenez F, Velasco M, Castro G, Carrillo-Ruiz JD, Fanghanel G, Boleaga B (2006) Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia 47:1203–1212

    PubMed  Google Scholar 

  14. Kim SH, Lim SC, Yang DW, Cho JH, Son BC, Kim J, Hong SB, Shon YM (2017) Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat 13:2607–2619

    PubMed  PubMed Central  Google Scholar 

  15. Yan H, Boutet A, Mithani K, Germann J, Elias GJB, Yau I, Go C, Kalia SK, Lozano AM, Fasano A, Ibrahim GM (2020) Aggressiveness after centromedian nucleus stimulation engages prefrontal thalamocortical circuitry. Brain Stimul 13:357–359

    PubMed  Google Scholar 

  16. Valentin A, Selway RP, Amarouche M, Mundil N, Ughratdar I, Ayoubian L, Martin-Lopez D, Kazi F, Dar T, Jimenez-Jimenez D, Hughes E, Alarcon G (2017) Intracranial stimulation for children with epilepsy. Eur J Paediatr Neurol 21:223–231

    PubMed  Google Scholar 

  17. DiFrancesco MF, Halpern CH, Hurtig HH, Baltuch GH, Heuer GG (2012) Pediatric indications for deep brain stimulation. Childs Nerv Syst 28:1701–1714

    PubMed  Google Scholar 

  18. Marks WA, Honeycutt J, Acosta F, Reed M (2009) Deep brain stimulation for pediatric movement disorders. Semin Pediatr Neurol 16:90–98

    PubMed  Google Scholar 

  19. Coulombe MA, Elkaim LM, Alotaibi NM, Gorman DA, Weil AG, Fallah A, Kalia SK, Lipsman N, Lozano AM, Ibrahim GM (2018) Deep brain stimulation for Gilles de la Tourette syndrome in children and youth: a meta-analysis with individual participant data. J Neurosurg Pediatr 23:236–246

    PubMed  Google Scholar 

  20. Wu H, Van Dyck-Lippens PJ, Santegoeds R, van Kuyck K, Gabriels L, Lin G, Pan G, Li Y, Li D, Zhan S, Sun B, Nuttin B (2013) Deep-brain stimulation for anorexia nervosa. World Neurosurg 80(S29):e21–e10

    Google Scholar 

  21. Davidson B, Elkaim LM, Lipsman N, Ibrahim GM (2018) Editorial. An ethical framework for deep brain stimulation in children. Neurosurg Focus 45:E11

    PubMed  Google Scholar 

  22. Rodrigues NB, Mithani K, Meng Y, Lipsman N, Hamani C (2018) The emerging role of tractography in deep brain stimulation: basic principles and current applications. Brain Sci 8:23

    PubMed Central  Google Scholar 

  23. Marks W, Bailey L, Sanger TD (2017) PEDiDBS: The pediatric international deep brain stimulation registry project. Eur J Paediatr Neurol 21:218–222

    PubMed  Google Scholar 

  24. Koy A, Weinsheimer M, Pauls KA, Kuhn AA, Krause P, Huebl J, Schneider GH, Deuschl G, Erasmi R, Falk D, Krauss JK, Lutjens G, Schnitzler A, Wojtecki L, Vesper J, Korinthenberg R, Coenen VA, Visser-Vandewalle V, Hellmich M, Timmermann L, Consortium G (2017) German registry of paediatric deep brain stimulation in patients with childhood-onset dystonia (GEPESTIM). Eur J Paediatr Neurol 21:136–146

    CAS  PubMed  Google Scholar 

  25. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381

    PubMed  Google Scholar 

  26. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN, Consortium RE (2019) The REDCap consortium: building an international community of software platform partners. J Biomed Inform 95:103208

    PubMed  PubMed Central  Google Scholar 

  27. Burke RE, Fahn S, Marsden CD, Bressman SB, Moskowitz C, Friedman J (1985) Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 35:73–77

    CAS  PubMed  Google Scholar 

  28. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshe SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang YH, Zuberi SM (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521

    PubMed  PubMed Central  Google Scholar 

  29. McHugh JC, Singh HW, Phillips J, Murphy K, Doherty CP, Delanty N (2007) Outcome measurement after vagal nerve stimulation therapy: proposal of a new classification. Epilepsia 48:375–378

    PubMed  Google Scholar 

  30. Cramer JA, Baker GA, Jacoby A (2002) Development of a new seizure severity questionnaire: initial reliability and validity testing. Epilepsy Res 48:187–197

    PubMed  Google Scholar 

  31. Carpay JA, Vermuelen J, Stroink H, Brouwer OF, Peters AC, Aldenkamp AP, van Donselaar CA, Arts WF (1997) Seizure severity in children with epilepsy: a parent-completed scale compared with clinical data. Epilepsia 38:346–352

    CAS  PubMed  Google Scholar 

  32. Varni JW, Seid M, Rode CA (1999) The PedsQL: measurement model for the pediatric quality of life inventory. Med Care 37:126–139

    CAS  PubMed  Google Scholar 

  33. Sabaz M, Lawson JA, Cairns DR, Duchowny MS, Resnick TJ, Dean PM, Bleasel AF, Bye AM (2006) The impact of epilepsy surgery on quality of life in children. Neurology 66:557–561

    CAS  PubMed  Google Scholar 

  34. Conway L, Widjaja E, Smith ML (2018) Impact of resective epilepsy surgery on health-related quality of life in children with and without low intellectual ability. Epilepsy Behav 83:131–136

    PubMed  Google Scholar 

  35. Stevens K (2012) Valuation of the Child Health Utility 9D Index. Pharmacoeconomics 30:729–747

    PubMed  Google Scholar 

  36. Stevens KJ (2010) Working with children to develop dimensions for a preference-based, generic, pediatric, health-related quality-of-life measure. Qual Health Res 20:340–351

    PubMed  Google Scholar 

  37. Ravens-Sieberer U, Gosch A, Rajmil L, Erhart M, Bruil J, Duer W, Auquier P, Power M, Abel T, Czemy L, Mazur J, Czimbalmos A, Tountas Y, Hagquist C, Kilroe J, KIDSCREEN Group E (2005) KIDSCREEN-52 quality-of-life measure for children and adolescents. Expert Rev Pharmacoecon Outcomes Res 5:353–364

    PubMed  Google Scholar 

  38. Ravens-Sieberer U, Gosch A, Rajmil L, Erhart M, Bruil J, Power M, Duer W, Auquier P, Cloetta B, Czemy L, Mazur J, Czimbalmos A, Tountas Y, Hagquist C, Kilroe J, Group K (2008) The KIDSCREEN-52 quality of life measure for children and adolescents: psychometric results from a cross-cultural survey in 13 European countries. Value Health 11:645–658

    PubMed  Google Scholar 

  39. Bernstein IH, Rush AJ, Trivedi MH, Hughes CW, Macleod L, Witte BP, Jain S, Mayes TL, Emslie GJ (2010) Psychometric properties of the Quick Inventory of Depressive Symptomatology in adolescents. Int J Methods Psychiatr Res 19:185–194

    PubMed  PubMed Central  Google Scholar 

  40. Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166:1092–1097

    PubMed  Google Scholar 

  41. Brouwer WB, van Exel NJ, van Gorp B, Redekop WK (2006) The CarerQol instrument: a new instrument to measure care-related quality of life of informal caregivers for use in economic evaluations. Qual Life Res 15:1005–1021

    CAS  PubMed  Google Scholar 

  42. Amtmann D, Cook KF, Jensen MP, Chen WH, Choi S, Revicki D, Cella D, Rothrock N, Keefe F, Callahan L, Lai JS (2010) Development of a PROMIS item bank to measure pain interference. Pain 150:173–182

    PubMed  PubMed Central  Google Scholar 

  43. Munhoz RP, Picillo M, Fox SH, Bruno V, Panisset M, Honey CR, Fasano A (2016) Eligibility criteria for deep brain stimulation in Parkinson’s disease, tremor, and dystonia. Can J Neurol Sci 43:462–471

    PubMed  Google Scholar 

  44. Lozano CS, Ranjan M, Boutet A, Xu DS, Kucharczyk W, Fasano A, Lozano AM (2018) Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson’s disease. J Neurosurg: 1-6

  45. Koss AM, Alterman RL, Tagliati M, Shils JL (2005) Calculating total electrical energy delivered by deep brain stimulation systems. Ann Neurol 58:168 author reply 168-169

    PubMed  Google Scholar 

  46. Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, Tietze A, Husch A, Perera T, Neumann WJ, Reisert M, Si H, Oostenveld R, Rorden C, Yeh FC, Fang Q, Herrington TM, Vorwerk J, Kuhn AA (2019) Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184:293–316

    PubMed  Google Scholar 

  47. Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Coalson TS, Harms MP, Jenkinson M, Moeller S, Robinson EC, Sotiropoulos SN, Xu J, Yacoub E, Ugurbil K, Van Essen DC (2016) The Human Connectome Project’s neuroimaging approach. Nat Neurosci 19:1175–1187

    PubMed  PubMed Central  Google Scholar 

  48. Elkaim LM, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM (2018) Deep brain stimulation for childhood dystonia: current evidence and emerging practice. Expert Rev Neurother 18:773–784

    CAS  PubMed  Google Scholar 

  49. Spottke EA, Volkmann J, Lorenz D, Krack P, Smala AM, Sturm V, Gerstner A, Berger K, Hellwig D, Deuschl G, Freund HJ, Oertel WH, Dodel RC (2002) Evaluation of healthcare utilization and health status of patients with Parkinson’s disease treated with deep brain stimulation of the subthalamic nucleus. J Neurol 249:759–766

    CAS  PubMed  Google Scholar 

  50. Dang TTH, Rowell D, Connelly LB (2019) Cost-effectiveness of deep brain stimulation with movement disorders: a systematic review. Mov Disord Clin Pract 6:348–358

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Ibrahim.

Ethics declarations

Conflict of interest

SKK reports honoraria, consulting and speaker fees received from Medtronic. AF reports honoraria received for consultancies from Abbvie, Medtronic, Boston Scientific, Sunovion, Chiesi farmaceutici, UCB, and Ipsen; honoraria for participation in advisory boards from Abbvie, Boston Scientific, and Ipsen. HY, LS, SB, CG, HDG, IY, CG, ED, AGW, AF, GMI have no disclosures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Siegel, L., Breitbart, S. et al. The Child & Youth CompreHensIve Longitudinal Database for Deep Brain Stimulation (CHILD-DBS). Childs Nerv Syst 37, 607–615 (2021). https://doi.org/10.1007/s00381-020-04880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04880-4

Keywords

Navigation