Skip to main content

Advertisement

Log in

Pre-clinical models in pediatric traumatic brain injury—challenges and lessons learned

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Despite the enormity of the problem and the lack of new therapies, research in the pre-clinical arena specifically using pediatric traumatic brain injury (TBI) models is limited. In this review, some of the key models addressing both the age spectrum of pediatric TBI and its unique injury mechanisms will be highlighted. Four topics will be addressed, namely, (1) unique facets of the developing brain important to TBI model development, (2) a description of some of the most commonly used pre-clinical models of severe pediatric TBI including work in both rodents and large animals, (3) a description of the pediatric models of mild TBI and repetitive mild TBI that are relatively new, and finally (4) a discussion of challenges, gaps, and potential future directions to further advance work in pediatric TBI models.

Methods

This narrative review on the topic of pediatric TBI models was based on review of PUBMED/Medline along with a synthesis of information on key factors in pre-clinical and clinical developmental brain injury that influence TBI modeling.

Results

In the contemporary literature, six types of models have been used in rats including weight drop, fluid percussion injury (FPI), impact acceleration, controlled cortical impact (CCI), mechanical shaking, and closed head modifications of CCI. In mice, studies are largely restricted to CCI. In large animals, FPI and rotational injury have been used in piglets and shake injury has also been used in lambs. Most of the studies have been in severe injury models, although more recently, studies have begun to explore mild and repetitive mild injuries to study concussion.

Conclusions

Given the emerging importance of TBI in infants and children, the morbidity and mortality that is produced, along with its purported link to the development of chronic neurodegenerative diseases, studies in these models merit greater systematic investigations along with consortium-type approaches and long-term follow-up to translate new therapies to the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. https://www.cdc.gov/traumaticbraininjury/get_the_facts.html. Accessed 6 May 2017

  2. Jenkins LW, Kochanek PM (2016) Developmental neurobiology, neurophysiology, and the PICU. In: Nichols DG, Shaffner DH (eds) Rogers’ textbook of pediatric intensive care, 5th edn. Wolters Kluwer, Philadelphia, pp 861–876

    Google Scholar 

  3. Margulies SS, Thibault KL (2000) Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J Biomech Eng 122:364–371

    Article  CAS  PubMed  Google Scholar 

  4. Mansfield RT, Schiding JK, Hamilton RL, Kochanek PM (1996) Effects of hypothermia on traumatic brain injury in immature rats. J Cereb Blood Flow Metab 16:244–252

    Article  CAS  PubMed  Google Scholar 

  5. Grundl PD, Biagas KV, Kochanek PM, Schiding JK, Barmada M, Nemoto EM (1994) Early cerebrovascular response to head injury in immature and mature rats. J Neurotrauma 11:135–148

    Article  CAS  PubMed  Google Scholar 

  6. Biagas KV, Grundl PD, Kochanek PM, Schiding JK, Nemoto EM (1996) Posttraumatic cerebral hyperemia in rats: autoradiographic determination of age-related differences in the response to percussive injury. J Neurotrauma 13:189–200

    CAS  PubMed  Google Scholar 

  7. Clark RS, Kochanek PM, Schwarz MA, Schiding JK, Turner DS, Chen M, Carlos TM, Watkins SC (1996) Inducible nitric oxide synthase expression in cerebrovascular smooth muscle and neutrophils after traumatic brain injury in immature rats. Pediatr Res 39:784–790

    Article  CAS  PubMed  Google Scholar 

  8. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao W-L, Yoshihara K, Faden AI (2001) Differential expression of apoptotic protease-activating factor-1 and case-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21:7439–7446

    CAS  PubMed  Google Scholar 

  9. Adelson PD, Dixon CE, Kochanek PM (2000) Long-term dysfunction following diffuse traumatic brain injury in the immature rat. J Neurotrauma 17:277–286

    Article  Google Scholar 

  10. Jenkins LW, Peters GW, Dixon CE, Zhang X, Clark RSB, Skinner JC, Marion DW, Adelson PD, Kochanek PM (2002) Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma 19:715–740

    Article  CAS  PubMed  Google Scholar 

  11. Bittigau P, Sifringer M, Felderhoff-Mueser U, Hansen HH, Ikonomidou C (2003) Neuropathological and biochemical features of traumatic injury in the developing brain. Neurotox Res 5:475–490

    Article  PubMed  Google Scholar 

  12. Bittigau P, Sifringer M, Felderhoff-Mueser U, Ikonomidou C (2004) Apoptotic neurodegeneration in the context of traumatic injury to the developing brain. Exp Toxicol Pathol 56:83–99

    Article  PubMed  Google Scholar 

  13. Prins ML, Fujima LW, Hovda DA (2005) Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 82:413–420

    Article  CAS  PubMed  Google Scholar 

  14. Giza CC, Griesbach GS, Hovda DA (2005) Experience-dependent behavioral plasticity is disturbed following traumatic injury to the immature brain. Behav Brain Res 157:11–22

    Article  PubMed  Google Scholar 

  15. Huh JW, Widing AG, Raghupathi R (2007) Repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report. J Neurotrauma 24:15–27

    Article  PubMed  Google Scholar 

  16. Adelson PD, Fellows-Mayle W, Kochanek PM, Dixon CE (2013) Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Childs Nerv Syst 29:43–53

    Article  PubMed  Google Scholar 

  17. Fidan EG, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP, Bondi CO, Clark RSB, Dezfulian C, Kochanek PM, Kagan VE, Bayır H (2016) Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J Neurotrauma 33:641–651

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prins ML, Hovda DA (2003) Developing experimental models to address traumatic brain injury in children. J Neurotrauma 20:123–137

    Article  PubMed  Google Scholar 

  19. Raghypathi R, Marguilies SS (2002) Traumatic axonal injury after closed head injury in the neonatal pig. J Neurotrauma 19:843–853

    Article  Google Scholar 

  20. Armstead WM, Kurth CD (1994) Different cerebral hemodynamic responses following fluid percussion brain injury in the newborn and juvenile pig. J Neurotrauma 11:487–497

    Article  CAS  PubMed  Google Scholar 

  21. Armstead WM, Riley J, Vavilala MS (2013) Dopamine prevents impairment of autoregulation after traumatic brain injury in the newborn pig through inhibition of up-regulation of endothelin-1 and extracellular signal-regulated kinase mitogen-activated protein kinase. Pediatr Crit Care Med 14:e103–e111

    Article  PubMed  PubMed Central  Google Scholar 

  22. Armstead WM, Riley J, Vavilala MS (2016) Preferential protection of cerebral autoregulation and reduction of hippocampal necrosis with norepinephrine after traumatic brain injury in female piglets. Pediatr Crit Care Med 17:e130–e137

    Article  PubMed  PubMed Central  Google Scholar 

  23. Curvello V, Hekierski H, Riley J, Vavilala M, Armstead WM (2017) Sex and age differences in phenylephrine mechanisms and outcomes after piglet brain injury. Pediatr Res. doi:10.1038/pr.2017.83

  24. Finnie JW, Blumbergs PC, Manavis J, Turner RJ, Helps S, Vink R, Byard RW, Chidlow G, Sandoz B, Dutschke J, Anderson RW (2012) Neuropathological changes in a lamb model of non-accidental head injury (the shaken baby syndrome). J Clin Neurosci 19:1159–1164

    Article  CAS  PubMed  Google Scholar 

  25. Sandoz B, Dutshke J, Liu Q, Manavis J, Finnie JW, Vink R, Anderson RWG (2012) In vivo biomechanical response of ovine heads to shaken baby syndrome events. Comput Methods Biomech Biomed Engin 15(Suppl 1):293–294

    Article  PubMed  Google Scholar 

  26. Anderson RW, Sandoz B, Dutschke JK, Finnie JW, Turner RJ, Blumbergs PC, Manavis J, Vink R (2014) Biomechanical studies in an ovine model of non-accidental head injury. J Biomech 47:2578–2583

    Article  CAS  PubMed  Google Scholar 

  27. Dutschke JK, Finnie JW, Manavis J, Anderson RW (2017) Semiquantitation of axonal injury in traumatically damaged brains using color deconvolution. Appl Immunohistochem Mol Morphol 25:277–281

    Article  Google Scholar 

  28. Smith SL, Andrus PK, Gleason DD, Hall ED (1998) Infant rat model of the shaken baby syndrome: preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration. J Neurotrauma 15:693–705

    Article  CAS  PubMed  Google Scholar 

  29. Smith SL, Hall ED (1998) Tirilazad widens the therapeutic window for riluzole-induced attenuation of progressive cortical degeneration in an infant rat model of the shaken baby syndrome. J Neurotrauma 15:707–719

    Article  CAS  PubMed  Google Scholar 

  30. Bonnier C, Mesplès B, Carpentier S, Henin D, Gressens P (2002) Delayed white matter injury in a murine model of shaken baby syndrome. Brain Pathol 12:320–328

    Article  CAS  PubMed  Google Scholar 

  31. Hanlon LA, Huh JW, Raghupathi R (2016) Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J Neuropathol Exp Neurol 75:214–226

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hanlon LA, Raghupathi R, Huh JW (2017) Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat. Exp Neurol 290:1–14

    Article  CAS  PubMed  Google Scholar 

  33. Dileonardi AM, Huh JW, Raghupathi R (2012) Differential effects of FK506 on structural and functional axonal deficits after diffuse brain injury in the immature rat. J Neuropathol Exp Neurol 71:959–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bayır H, Kochanek PM, Kagan VE (2006) Oxidative stress in immature brain after traumatic brain injury. Dev Neurosci 28:420–431

    Article  PubMed  Google Scholar 

  35. Ditelberg JS, Sheldon RA, Epstein CJ, Ferriero DM (1996) Brain injury after perinatal hypoxia-ischemia is exacerbated in copper/zinc superoxide dismutase transgenic mice. Pediatr res 39:204–208

    Article  CAS  PubMed  Google Scholar 

  36. Tsuru-Aoyagi K, Potts MB, Trivedi A, Pfankuch T, Raber J, Wendland M, Claus CP, Koh SE, Ferriero D, Noble-Haeusslein LJ (2009) Glutathione peroxidase activity modulates recovery in the injured immature brain. Ann Neurol 65:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji J, Kline AE, Amoscato A, Arias AS, Sparvero LJ, Tyurin VA, Tyurina YY, Fink B, Manole MD, Puccio AM, Okonkwo DO, Cheng JP, Alexander H, Clark RS, Kochanek PM, Wipf P, Kaga VE, Bayır H (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 15:1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Young C, Roth KA, Klocke BJ, West T, Holtzman DM, Labruyere J, Qin Y-Q, Dikranian K, Olney JW (2005) Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol Dis 20:608–614

    Article  CAS  PubMed  Google Scholar 

  39. Hayes SR, Deshpande JK (2011) Newly postulated neurodevelopmental risks of pediatric anesthesia. Curr Neurol Neurosci Rep 11:205–210

    Article  Google Scholar 

  40. McDonald JW, Johnston MV (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev 15:41–70

    Article  PubMed  Google Scholar 

  41. Zou X, Liu F, Zhang X, Patterson TA, Callicott R, Liu S, Hanig JP, Paule MG, Slikker W Jr, Wang C (2011) Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol 33:592–597

    Article  CAS  PubMed  Google Scholar 

  42. Simon DW, McGeachy M, Bayır H, Clark RSB, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191

    Article  PubMed  Google Scholar 

  43. Hagberg H, Peebles D, Mallard C (2002) Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 8:30–38

    Article  PubMed  Google Scholar 

  44. Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, Romero R, Kannan RM (2012) Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med 4:130ra46

    Article  PubMed  PubMed Central  Google Scholar 

  45. Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412–4420

    Article  CAS  PubMed  Google Scholar 

  46. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  47. Dail WG, Feeney DM, Murray HM, Linn RT, Boyeson MG (1981) Responses to cortical injury: II. Widespread depression of the activity of an enzyme in cortex remote from a focal injury. Brain Res 211:79–89

    Article  CAS  PubMed  Google Scholar 

  48. Sifringer M, Stefovska V, Endesfelder S, Stahel PF, Genz K, Dzietko M, Ikonomidou C, Felderhoff-Mueser U (2007) Activation of caspase-1 dependent interleukins in developmental brain trauma. Neurobiol Dis 25:614–622

    Article  CAS  PubMed  Google Scholar 

  49. Cordobes F, Lobato RD, Rivas JJ, Portillo JM, Sarabia M, Munoz MJ (1987) Post-traumatic diffuse brain swelling: isolated or associated with cerebral axonal injury. Clinical course and intracranial pressure in 18 children. Childs Nerv Syst 3:235–238

    Article  CAS  PubMed  Google Scholar 

  50. Kochanek PM (2006) Pediatric traumatic brain injury: Quo Vadis. Dev Neurosci 28(4–5):244–255

    Article  CAS  PubMed  Google Scholar 

  51. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. Part I: pathophysiology and biomechanics. J Neurosurg 80:291–300

    Article  CAS  PubMed  Google Scholar 

  52. Blennow K, Brody D, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H (2016) Traumatic brain injuries. Nat Rev Dis Primers 2:16084

    Article  PubMed  Google Scholar 

  53. Giza CC, Prins ML, Hovda DA, Herschman HR, Feldman JD (2002) Genes preferentially induced by depolarization after concussive brain injury: effects of age and injury severity. J Neurotrauma 19:387–402

    Article  PubMed  Google Scholar 

  54. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  CAS  PubMed  Google Scholar 

  55. Giza CC, Maria NS, Hovda DA (2006) N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma 23:950–961

    Article  PubMed  PubMed Central  Google Scholar 

  56. Prins ML, Povlishock JT, Phillips LL (2003) The effects of combined fluid percussion traumatic brain injury and unilateral entorhinal deafferentation on the juvenile rat brain. Brain Res Dev Brain Res 140:93–104

    Article  CAS  PubMed  Google Scholar 

  57. Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262

    Article  CAS  PubMed  Google Scholar 

  58. Kochanek PM, Dixon CE (2011) Animal models of traumatic brain injury. In: Winn HR (ed) Youmans neurological surgery, 6th edn. Elsevier Inc., Philadelphia, pp 3300–3304

    Chapter  Google Scholar 

  59. Kochanek AR, Kline AE, Gao WM, Chadha M, Lai Y, Clark RS, Dixon CE, Jenkins LW (2006) Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev Neurosci 28:410–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bayır H, Tyurin VA, Tyurin YY, Viener R, Ritov V, Amoscato A, Zhao Q, Zhang X, Feldman-Janesko KL, Alexander H, Clark RSB, Kochanek PM, Kagan VE (2007) Selective early cardiolipin oxidation after brain trauma: a lipidomics analysis. Ann Neurol 62:154–169

    Article  PubMed  Google Scholar 

  61. Robertson CL, Bucci CJ, Fiskum G (2004) Mitochondrial response to calcium in the developing brain. Brain Res Dev Brain Res 151:141–148

    Article  CAS  PubMed  Google Scholar 

  62. Huh JW, Franklin MA, Widing AG, Raghupathi R (2006) Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev Neurosci 28:466–476

    Article  CAS  PubMed  Google Scholar 

  63. Robertson CL, Saraswati M (2015) Progesterone protects mitochondrial function in a rat model of pediatric traumatic brain injury. J Bioenerg Biomembr 47:43–51

    Article  CAS  PubMed  Google Scholar 

  64. Tong W, Igarashi T, Ferriero DM, Noble LJ (2002) Traumatic brain injury in the immature mouse brain: characterization of regional vulnerability. Exp Neurol 176:105–116

    Article  PubMed  Google Scholar 

  65. Friess SH, Ichord RN, Owens K, Ralston J, Rizol R, Overall KL, Smith C, Helfaer MA, Margulies SS (2007) Neurobehavioral functional deficits following closed head injury in the neonatal pig. Exp Neurol 204:234–243

    Article  PubMed  Google Scholar 

  66. Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, Ichord RN, Margulies SS, Yodh AG (2009) Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Opt 14:034015

    Article  PubMed  PubMed Central  Google Scholar 

  67. Naim MY, Friess S, Smith C, Ralston J, Ryall K, Helfaer MA, Margulies SS (2010) Folic acid enhances early functional recovery in a piglet model of pediatric head injury. Dev Neurosci 32:466–479

    Article  CAS  PubMed  Google Scholar 

  68. Prins ML, Hales A, Reger M, Giza CC, Hovda DA (2010) Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev Neurosci 32:510–518

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Friess SH, Ichord RN, Ralston J, Ryall K, Helfaer MA, Smith C, Margulies SS (2009) Repeated traumatic brain injury affects composite cognitive function in piglets. J Neurotrauma 26:1111–1121

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kochanek PM, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Schmid KE, Mondello S, Wang KKW, Hayes RL, Povlishock JT, Tortella FC (2016) Operation Brain Trauma Therapy: approach to modeling therapy evaluation, drug selection, and biomarker assessments, for a multi-center pre-clinical drug screening consortium for acute therapies in severe traumatic brain injury. J Neurotrauma 33:513–522

    Article  PubMed  Google Scholar 

  71. Kochanek PM, Bramlett HM, Shear DA, Dixon CE, Mondello S, Dietrich WD, Hayes RL, Wang KKW, Poloyac SM, Empey PE, Povlishock JT, Mountney A, Browning M, Deng-Bryant Y, Yan HQ, Jackson TC, Catania M, Glushakova O, Richieri SP, Tortella FC (2016) Operation Brain Trauma Therapy: synthesis of findings, current investigations, and future directions. J Neurotrauma 33:606–614

    Article  PubMed  Google Scholar 

  72. Margulies SS, Kilbaugh T, Sullivan S, Smith C, Propert K, Byro M, Saliga K, Costine BA, Duhaime AC (2015) Establishing a clinically relevant large animal model platform for TBI therapy development: using cyclosporine A as a case study. Brain Pathol 25:289–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bell MJ, Adelson PD, Hutchison JS, Kochanek PM, Tasker RC, Vavilala MS, Beers SR, Fabio A, Kelsey SF, Wisniewski SR, and the Multiple Medical Therapies for Pediatric Traumatic Brain Injury Workgroup (2013) Differences in medical therapy goals for children with severe traumatic brain injury—an international study. Pediatr Crit Care Med 14:811–818

    Article  PubMed  PubMed Central  Google Scholar 

  74. Miller Ferguson N, Sarnaik A, Miles D, Shafi N, Peters MJ, Truemper E, Vavilala MS, Bell MJ, Wisniewski SR, Luther JF, Hartman AL, Kochanek PM for the investigators of the ADAPT trial (2017) Abusive head trauma and mortality—an analysis from an international comparative study of children with severe traumatic brain injury. Crit Care Med. doi:10.1097/CCM.0000000000002378

  75. Kochanek PM, Bell MJ (2015) Tackling the challenges of clinical trials for severe traumatic brain injury in children: screening, phenotyping, and adapting. Crit Care Med 43:1544–1546

    Article  PubMed  Google Scholar 

  76. Shein SL, Ferguson NM, Kochanek PM, Bayır H, Clark RSB, Fink EL, Tyler-Kabara EC, Wisniewski SR, Tian Y, Bell MJ (2016) Effectiveness of pharmacological therapies for intracranial hypertension in children with severe traumatic brain injury—results from an automated data collection system time-synched to drug administration. Pediatr Crit Care Med 17:236–245

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank NICHD T32 HD 040686 for the support (JW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Kochanek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochanek, P.M., Wallisch, J.S., Bayır, H. et al. Pre-clinical models in pediatric traumatic brain injury—challenges and lessons learned. Childs Nerv Syst 33, 1693–1701 (2017). https://doi.org/10.1007/s00381-017-3474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-017-3474-2

Keywords

Navigation