Skip to main content
Log in

Prenatal diagnosis of spina bifida: from intracranial translucency to intrauterine surgery

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Accurate and timely prenatal diagnosis of spina bifida (SB) is a major goal of modern antenatal care. Prenatal screening for open SB should be first performed at the time of routine first-trimester ultrasound by examining the posterior fossa for obliteration or non-visualization of the fourth ventricle (“intracranial translucency”) and cisterna magna. The second step of screening is the second-trimester anatomy scan, at which time the features of the Chiari type II malformation should be looked for, including ventriculomegaly, scalloping of the frontal bones (“lemon” sign), and backward and caudal displacement of the cerebellar vermis with obliteration of the cisterna magna (“banana” sign). In cases with positive findings, evaluation must include a focused examination of the spine for defects. In cases of closed SB and SB occulta, the cranial and posterior fossa features will not be present as they are not associated with leaking of spinal fluid and resultant hindbrain herniation, highlighting the fact that the spine should be examined thoroughly whenever possible during the second-trimester scan. In tertiary fetal medicine centers, two-dimensional and three-dimensional ultrasound allows an accurate determination of the location, type, extent, and upper level of the spinal defect as well as the presence of associated anomalies. Fetal magnetic resonance imaging should be restricted to candidates for intrauterine surgery as part of the preoperative protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Botto LD, Moore CA, Khoury MJ, Erickson JD (1999) Neural-tube defects. N Engl J Med 341:1509–1519

    Article  CAS  PubMed  Google Scholar 

  2. Kaufman BA (2004) Neural tube defects. Pediatr Clin N Am 51:389–419

    Article  Google Scholar 

  3. Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS (2004) Spina bifida. Lancet 364:1885–1895

    Article  PubMed  Google Scholar 

  4. De Wals P, Tairou F, Van Allen MI et al (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357:135–142

    Article  CAS  PubMed  Google Scholar 

  5. Cortes F, Mellado C, Pardo RA, Villarroel LA, Hertrampf E (2012) Wheat flour fortification with folic acid: changes in neural tube defects rates in Chile. Am J Med Genet 158A:1885–1890

    Article  PubMed  CAS  Google Scholar 

  6. Atta CA, Fiest KM, Frolkis AD et al (2016) Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis. Am J Public Health 106:e24–e34

    Article  PubMed  Google Scholar 

  7. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12

    Article  CAS  PubMed  Google Scholar 

  8. McLone DG, Dias MS (2003) The Chiari II malformation: cause and impact. Childs Nerv Syst 19:540–550

    Article  PubMed  Google Scholar 

  9. Mehta VA, Bettegowda C, Amin A, El-Gassim M, Jallo G, Ahn ES (2011) Impact of tethered cord release on symptoms of Chiari II malformation in children born with a myelomeningocele. Childs Nerv Syst 27:975–978

    Article  PubMed  Google Scholar 

  10. Stevenson KL (2004) Chiari type II malformation: past, present, and future. Neurosurg Focus 16:E5

    Article  PubMed  Google Scholar 

  11. Roach JW, Short BF, Saltzman HM (2011) Adult consequences of spina bifida: a cohort study. Clin Orthop Relat Res 469:1246–1252

    Article  PubMed  Google Scholar 

  12. Jenkinson MD, Campbell S, Hayhurst C et al (2011) Cognitive and functional outcome in spina bifida-Chiari II malformation. Childs Nerv Syst 27:967–974

    Article  PubMed  Google Scholar 

  13. Rocque BG, Bishop ER, Scogin MA et al (2015) Assessing health-related quality of life in children with spina bifida. J Neurosurg Pediatr 15:144–149

    Article  PubMed  Google Scholar 

  14. Allan LD, Ferguson-Smith MA, Donald I, Sweet EM, Gibson AAM (1973) Amniotic-fluid alpha-fetoprotein in the antenatal diagnosis of spina bifida. Lancet 2:522–525

    Article  CAS  PubMed  Google Scholar 

  15. Adzick NS, Thom EA, Spong CY et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    Article  CAS  PubMed  Google Scholar 

  17. Rossi A, Gandolfo C, Morana G et al (2006) Current classification and imaging of congenital spinal abnormalities. Semin Roentgenol 41:250–273

    Article  PubMed  Google Scholar 

  18. Guggisberg D, Hadj-Rabia S, Viney C et al (2004) Skin markers of occult spinal dysraphism in children: a review of 54 cases. Arch Dermatol 140:1109–1115

    Article  PubMed  Google Scholar 

  19. Pacheco-Jacome E, Ballesteros MC, Jayakar P, Morrison G, Ragheb J, Medina LS (2003) Occult spinal dysraphism: evidence-based diagnosis and treatment. Neuroimaging Clin N Am 13:327–334

    Article  PubMed  Google Scholar 

  20. Ghi T, Pilu G, Falco P et al (2006) Prenatal diagnosis of open and closed spina bifida. Ultrasound Obstet Gynecol 28:899–903

    Article  CAS  PubMed  Google Scholar 

  21. D'Addario V, Rossi AC, Pinto V, Pintucci A, Di Cagno L (2008) Comparison of six sonographic signs in the prenatal diagnosis of spina bifida. J Perinat Med 36:330–334

    Article  PubMed  Google Scholar 

  22. Bahlmann F, Reinhard I, Schramm T et al (2015) Cranial and cerebral signs in the diagnosis of spina bifida between 18 and 22 weeks of gestation: a German multicentre study. Prenat Diagn 35:228–235

    Article  CAS  PubMed  Google Scholar 

  23. Cuckle H, Maymon R (2016) Development of prenatal screening—a historical overview. Semin Perinatol 40:12–22

    Article  PubMed  Google Scholar 

  24. Brock DJ, Sutcliffe RG (1972) Alpha-fetoprotein in the antenatal diagnosis of anencephaly and spina bifida. Lancet 2:197–199

    Article  CAS  PubMed  Google Scholar 

  25. Brock DJH, Scrimgeour JB (1972) Early prenatal diagnosis of anencephaly. Lancet 2:1252–1253

    Article  CAS  PubMed  Google Scholar 

  26. Brock DJ, Bolton AE, Monaghan JM (1973) Prenatal diagnosis of anencephaly through maternal serum-alphafetoprotein measurement. Lancet 2:923–924

    Article  CAS  PubMed  Google Scholar 

  27. Wald NJ, Brock DJ, Bonnar J (1974) Prenatal diagnosis of spina bifida and anencephaly by maternal serum-alpha-fetoprotein measurement. A controlled study. Lancet 1:765–767

    Article  CAS  PubMed  Google Scholar 

  28. Brock DJH, Bolton AE, Scrimgeour JB (1974) Prenatal diagnosis of spina bifida and anencephaly through maternal plasma-alpha-fetoprotein measurement. Lancet 1:767–769

    Article  CAS  PubMed  Google Scholar 

  29. Wald NJ, Cuckle H, Brock JH, Peto R, Polani PE, Woodford FP (1977) Maternal serum-alpha-fetoprotein measurement in antenatal screening for anencephaly and spina bifida in early pregnancy. Report of U.K. collaborative study on alpha-fetoprotein in relation to neural-tube defects. Lancet 1:1323–1332

    CAS  PubMed  Google Scholar 

  30. Anonymous (1981) Amniotic fluid acetylcholinesterase electrophoresis as a secondary test in the diagnosis of anencephaly and open spina bifida in early pregnancy. Report of the Collaborative Acetylcholinesterase Study. Lancet 2:321–324

    Google Scholar 

  31. Filly RA, Callen PW, Goldstein RB (1993) Alpha-fetoprotein screening programs: what every obstetric sonologist should know. Radiology 188:1–9

    Article  CAS  PubMed  Google Scholar 

  32. Cameron M, Moran P (2009) Prenatal screening and diagnosis of neural tube defects. Prenat Diagn 29:402–411

    Article  PubMed  Google Scholar 

  33. Campbell S, Pryse-Davies J, Coltart TM, Seller MJ, Singer JD (1975) Ultrasound in the diagnosis of spina bifida. Lancet 1:1065–1068

    Article  CAS  PubMed  Google Scholar 

  34. Nicolaides KH, Campbell S, Gabbe SG, Guidetti R (1986) Ultrasound screening for spina bifida: cranial and cerebellar signs. Lancet 2:72–74

    Article  CAS  PubMed  Google Scholar 

  35. Campbell J, Gilbert WM, Nicolaides KH, Campbell S (1987) Ultrasound screening for spina bifida: cranial and cerebellar signs in a high-risk population. Obstet Gynecol 70:247–250

    CAS  PubMed  Google Scholar 

  36. Van den Hof MC, Nicolaides KH, Campbell J, Campbell S (1990) Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol 162:322–327

    Article  CAS  PubMed  Google Scholar 

  37. Nadel AS, Green JK, Holmes LB, Frigoletto FD, Benacerraf BR (1990) Absence of need for amniocentesis in patients with elevated levels of maternal serum alpha-fetoprotein and normal ultrasonographic examinations. N Engl J Med 323:557–561

    Article  CAS  PubMed  Google Scholar 

  38. Watson WJ, Chescheir NC, Katz VL, Seeds JW (1991) The role of ultrasound in evaluation of patients with elevated maternal serum alpha-fetoprotein: a review. Obstet Gynecol 78:123–128

    CAS  PubMed  Google Scholar 

  39. Morrow RJ, McNay MB, Whittle MJ (1991) Ultrasound detection of neural tube defects in patients with elevated maternal serum alpha-fetoprotein. Obstet Gynecol 78:1055–1057

    CAS  PubMed  Google Scholar 

  40. Sepulveda W, Donaldson A, Johnson RD, Davies G, Fisk NM (1995) Are routine alpha-fetoprotein and acetylcholinesterase determinations still necessary at second-trimester amniocentesis? Impact of high-resolution ultrasonography. Obstet Gynecol 85:107–112

    Article  CAS  PubMed  Google Scholar 

  41. Widlund KF, Gottvall T (2007) Routine assessment of amniotic fluid alpha-fetoprotein in early second-trimester amniocentesis is no longer justified. Acta Obstet Gynecol Scand 86:167–171

    Article  PubMed  Google Scholar 

  42. Flick A, Krakow D, Martirosian A, Silverman N, Platt LD (2014) Routine measurement of amniotic fluid alpha-fetoprotein and acetylcholinesterase: the need for a reevaluation. Am J Obstet Gynecol 211:139.e1-6.

  43. Norem CT, Schoen EJ, Walton DL et al (2005) Routine ultrasonography compared with maternal serum alpha-fetoprotein for neural tube defect screening. Obstet Gynecol 106:747–752

    Article  PubMed  Google Scholar 

  44. Roman AS, Gupta S, Fox NS, Saltzman D, Klauser CK, Rebarber A (2015) Is MSAFP still a useful test for detecting open neural tube defects and ventral wall defects in the era of first-trimester and early second-trimester fetal anatomical ultrasounds? Fetal Diagn Ther 37:206–210

    Article  PubMed  Google Scholar 

  45. Racusin DA, Villarreal S, Antony KM et al (2015) Role of maternal serum alpha-fetoprotein and ultrasonography in contemporary detection of spina bifida. Am J Perinatol 32:1287–1291

    Article  PubMed  Google Scholar 

  46. Romero R, Pilu G, Jeanty P, Ghidini A, Hobbins JC (1988) Prenatal diagnosis of congenital anomalies. Appleton & Lange, Norwalk

    Google Scholar 

  47. Nyberg DA, McGahan JP, Pretorius DH, Pilu G (2003) Diagnostic imaging of fetal anomalies. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  48. Nicolaides KH, Sebire NJ, Snijders RJM (1999) The 11–14-week scan. The diagnosis of fetal abnormalities. Parthenon Publishing, Lancashire

    Google Scholar 

  49. Pilu G, Nicolaides KH (1999) Diagnosis of fetal abnormalities. The 18–23-week scan. Parthenon Publishing, Lancashire

    Book  Google Scholar 

  50. Pilu G, Nicolaides KH, Meizner I, Romero R, Sepulveda W (2009) Prenatal diagnosis of fetal anomalies. In: Wladimiroff JW, Eik-Nes SH (eds) European practice in gynaecology and obstetrics. Ultrasound in Obstetrics and gynaecology, Elsevier, Edinburgh, pp 157–208

    Google Scholar 

  51. American Institute of Ultrasound in Medicine (2013) AIUM practice guideline for the performance of obstetric ultrasound examinations. J Ultrasound Med 32:1083–1101

    Article  Google Scholar 

  52. Salomon LJ, Alfirevic Z, Berghella V et al (2011) Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 37:116–126

    Article  CAS  PubMed  Google Scholar 

  53. Li DF, Woo JS (1986) Fractional spine length: a new parameter for assessing fetal growth. J Ultrasound Med 5:379–383

    Article  CAS  PubMed  Google Scholar 

  54. Filly RA, Simpson GF, Linkowski G (1987) Fetal spine morphology and maturation during the second trimester. Sonographic evaluation. J Ultrasound Med 6:631–636

    Article  CAS  PubMed  Google Scholar 

  55. Budorick NE, Pretorius DH, Nelson TR (1995) Sonography of the fetal spine: technique, imaging findings, and clinical implications. AJR Am J Roentgenol 164:421–428

    Article  CAS  PubMed  Google Scholar 

  56. International Society of Ultrasound in Obstetrics & Gynecology Education Committee (2007) Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound Obstet Gynecol 29:109–116

    Article  Google Scholar 

  57. Fleurke-Rozema JH, Vogel TA, Voskamp BJ et al (2014) Impact of introduction of mid-trimester scan on pregnancy outcome of open spina bifida in The Netherlands. Ultrasound Obstet Gynecol 43:553–556

    Article  CAS  PubMed  Google Scholar 

  58. Kollias SS, Goldstein RB, Cogen PH, Filly RA (1992) Prenatally detected myelomeningoceles: sonographic accuracy in estimation of the spinal level. Radiology 185:109–112

    Article  CAS  PubMed  Google Scholar 

  59. Bruner JP, Tulipan N, Dabrowiak ME et al (2004) Upper level of the spina bifida defect: how good are we? Ultrasound Obstet Gynecol 24:612–617

    Article  CAS  PubMed  Google Scholar 

  60. Appasamy M, Roberts D, Pilling D, Buxton N (2006) Antenatal ultrasound and magnetic resonance imaging in localizing the level of lesion in spina bifida and correlation with postnatal outcome. Ultrasound Obstet Gynecol 27:530–536

    Article  CAS  PubMed  Google Scholar 

  61. Blondiaux E, Katorza E, Rosenblatt J et al (2011) Prenatal US evaluation of the spinal cord using high-frequency linear transducers. Pediatr Radiol 41:374–383

    Article  PubMed  Google Scholar 

  62. Ben-Sira L, Garel C, Malinger G, Constantini S (2013) Prenatal diagnosis of spinal dysraphism. Childs Nerv Syst 29:1541–1552

    Article  PubMed  Google Scholar 

  63. Coleman BG, Langer JE, Horii SC (2015) The diagnostic features of spina bifida: the role of ultrasound. Fetal Diagn Ther 37:179–196

    Article  PubMed  Google Scholar 

  64. Chen CP (2007) Chromosomal abnormalities associated with neural tube defects (I): full aneuploidy. Taiwan J Obstet Gynecol 46:325–335

    Article  PubMed  Google Scholar 

  65. Babcook CJ, Goldstein RB, Filly RA (1995) Prenatally detected fetal myelomeningocele: is karyotype analysis warranted? Radiology 194:491–494

    Article  CAS  PubMed  Google Scholar 

  66. Harmon JP, Hiett AK, Palmer CG, Golichowski AM (1995) Prenatal ultrasound detection of isolated neural tube defects: is cytogenetic evaluation warranted? Obstet Gynecol 86:595–599

    Article  CAS  PubMed  Google Scholar 

  67. Hume RF, Drugan A, Reichler A et al (1996) Aneuploidy among prenatally detected neural tube defects. Am J Med Genet 61:171–173

    Article  PubMed  Google Scholar 

  68. Sepulveda W, Corral E, Ayala C, Be C, Gutierrez J, Vasquez P (2004) Chromosomal abnormalities in fetuses with open neural tube defects: prenatal identification with ultrasound. Ultrasound Obstet Gynecol 23:352–356

    Article  CAS  PubMed  Google Scholar 

  69. Nicolaides KH, Azar G, Byrne D, Mansur C, Marks K (1992) Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ 304:867–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Snijders RJ, Noble P, Sebire N, Souka A, Nicolaides KH (1998) UK multicentre project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10–14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. Lancet 352:343–346

    Article  CAS  PubMed  Google Scholar 

  71. Nicolaides KH (2011) Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn 31:7–15

    Article  PubMed  Google Scholar 

  72. Nicolaides KH (2011) A model for a new pyramid of prenatal care based on the 11 to 13 weeks’ assessment. Prenat Diagn 31:3–6

    Article  PubMed  Google Scholar 

  73. Orlandi E, Rossi C, Perino A, Cucinella G, Orlandi F (2016) Prospective sonographic detection of spina bifida at 11–14 weeks and systematic literature review. J Matern Fetal Neonatal Med 29:2363–2367

    PubMed  Google Scholar 

  74. Sebire NJ, Noble PL, Thorpe-Beeston JG, Snijders RJ, Nicolaides KH (1997) Presence of the ‘lemon’ sign in fetuses with spina bifida at the 10–14-week scan. Ultrasound Obstet Gynecol 10:403–405

    Article  CAS  PubMed  Google Scholar 

  75. Syngelaki A, Chelemen T, Dagklis T, Allan L, Nicolaides KH (2011) Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks. Prenat Diagn 31:90–102

    Article  PubMed  Google Scholar 

  76. Sepulveda W, Wong AE, Fauchon DE (2011) Fetal spinal anomalies in a first-trimester sonographic screening program for aneuploidy. Prenat Diagn 31:107–114

    Article  PubMed  Google Scholar 

  77. Souka AP, Pilalis A, Kavalakis Y, Kosmas Y, Antsaklis P, Antsaklis A (2004) Assessment of fetal anatomy at the 11–14-week ultrasound examination. Ultrasound Obstet Gynecol 24:730–734

    Article  CAS  PubMed  Google Scholar 

  78. Blaas HG, Eik-Nes SH, Isaksen CV (2000) The detection of spina bifida before 10 gestational weeks using two- and three-dimensional ultrasound. Ultrasound Obstet Gynecol 16:25–29

    Article  CAS  PubMed  Google Scholar 

  79. Bernard JP, Suarez B, Rambaud C, Muller F, Ville Y (1997) Prenatal diagnosis of neural tube defect before 12 weeks’ gestation: direct and indirect ultrasonographic semeiology. Ultrasound Obstet Gynecol 10:406–409

    Article  CAS  PubMed  Google Scholar 

  80. Buisson O, De Keersmaecker B, Senat MV, Bernard JP, Moscoso G, Ville Y (2002) Sonographic diagnosis of spina bifida at 12 weeks: heading towards indirect signs. Ultrasound Obstet Gynecol 19:290–292

    Article  CAS  PubMed  Google Scholar 

  81. Chaoui R, Benoit B, Mitkowska-Wozniak H, Heling KS, Nicolaides KH (2009) Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11–13-week scan. Ultrasound Obstet Gynecol 34:249–252

    Article  CAS  PubMed  Google Scholar 

  82. Chaoui R, Nicolaides KH (2010) From nuchal translucency to intracranial translucency: towards the early detection of spina bifida. Ultrasound Obstet Gynecol 35:133–138

    Article  CAS  PubMed  Google Scholar 

  83. Chaoui R, Benoit B, Heling KS et al (2011) Prospective detection of open spina bifida at 11–13 weeks by assessing intracranial translucency and posterior brain. Ultrasound Obstet Gynecol 38:722–726

    Article  CAS  PubMed  Google Scholar 

  84. Fong KW, Toi A, Okun N, Al-Shami E, Menezes RJ (2011) Retrospective review of diagnostic performance of intracranial translucency in detection of open spina bifida at the 11–13-week scan. Ultrasound Obstet Gynecol 38:630–634

    Article  CAS  PubMed  Google Scholar 

  85. Solt I, Acuna JG, Adeniji BA, Mirocha J, Kim MJ, Rotmensch S (2011) First-trimester visualization of the fourth ventricle in fetuses with and without spina bifida. J Ultrasound Med 30:1643–1647

    Article  PubMed  Google Scholar 

  86. Adiego B, Illescas T, Martinez-Ten P et al (2012) Intracranial translucency at 11–13 weeks of gestation: prospective evaluation and reproducibility of measurements. Prenat Diagn 32:259–263

    Article  PubMed  Google Scholar 

  87. Kavalakis I, Souka AP, Pilalis A, Papastefanou I, Kassanos D (2012) Assessment of the posterior brain at 11–14 weeks for the prediction of open neural tube defects. Prenat Diagn 32:1143–1146

    Article  PubMed  Google Scholar 

  88. Mangione R, Dhombres F, Lelong N et al (2013) Screening for fetal spina bifida at the 11–13-week scan using three anatomical features of the posterior brain. Ultrasound Obstet Gynecol 42:416–420

    CAS  PubMed  Google Scholar 

  89. Kappou D, Papastefanou I, Pilalis A, Kavalakis I, Kassanos D, Souka AP (2015) Towards detecting open spina bifida in the first trimester: the examination of the posterior brain. Fetal Diagn Ther 37:294–300

    Article  PubMed  Google Scholar 

  90. Chen FCK, Gerhardt J, Entezami M, Chaoui R, Henrich W (2017) Detection of spina bifida by first trimester screening—results of the prospective multicenter Berlin IT-study. Ultraschall Med 38:151–157

  91. Garcia-Posada R, Eixarch E, Sanz M, Puerto B, Figueras F, Borrell A (2013) Cisterna magna width at 11–13 weeks in the detection of posterior fossa anomalies. Ultrasound Obstet Gynecol 41:515–520

    Article  CAS  PubMed  Google Scholar 

  92. Karl K, Heling KS, Chaoui R (2015) Fluid area measurements in the posterior fossa at 11–13 weeks in normal fetuses and fetuses with open spina bifida. Fetal Diagn Ther 37:289–293

    Article  PubMed  Google Scholar 

  93. Lachmann R, Picciarelli G, Moratalla J, Greene N, Nicolaides KH (2010) Frontomaxillary facial angle in fetuses with spina bifida at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 36:268–271

    Article  CAS  PubMed  Google Scholar 

  94. Lachmann R, Chaoui R, Moratalla J, Picciarelli G, Nicolaides KH (2011) Posterior brain in fetuses with open spina bifida at 11 to 13 weeks. Prenat Diagn 31:103–106

    Article  PubMed  Google Scholar 

  95. Karl K, Benoit B, Entezami M, Heling KS, Chaoui R (2012) Small biparietal diameter in fetuses with spina bifida on 11–13-week and mid-gestation ultrasound. Ultrasound Obstet Gynecol 40:140–144

    Article  CAS  PubMed  Google Scholar 

  96. Bernard JP, Cuckle HS, Stirnemann JJ, Salomon LJ, Ville Y (2012) Screening for fetal spina bifida by ultrasound examination in the first trimester of pregnancy using fetal biparietal diameter. Am J Obstet Gynecol 207:306.e1-e5

    Google Scholar 

  97. Khalil A, Coates A, Papageorghiou A, Bhide A, Thilaganathan B (2013) Biparietal diameter at 11–13 weeks’ gestation in fetuses with open spina bifida. Ultrasound Obstet Gynecol 42:409–415

    CAS  PubMed  Google Scholar 

  98. Simon EG, Arthuis CJ, Haddad G, Bertrand P, Perrotin F (2015) Biparietal/transverse abdominal diameter ratio ≤ 1: potential marker for open spina bifida at 11–13-week scan. Ultrasound Obstet Gynecol 45:267–272

    Article  CAS  PubMed  Google Scholar 

  99. Finn M, Sutton D, Atkinson S et al (2011) The aqueduct of Sylvius: a sonographic landmark for neural tube defects in the first trimester. Ultrasound Obstet Gynecol 38:640–645. 100.

  100. Gadot Y, Cohen SM, Yagel S (2012) Do we really need a screening test for open spina bifida? Ultrasound Obstet Gynecol 39:600–601

    Article  CAS  PubMed  Google Scholar 

  101. Bredaki FE, Poon LC, Birdir C, Escalante D, Nicolaides KH (2012) First-trimester screening for neural tube defects using alpha-fetoprotein. Fetal Diagn Ther 31:109–114

    Article  CAS  PubMed  Google Scholar 

  102. Spencer K, Khalil A, Brown L, Mills I, Horne H (2014) First trimester maternal serum alpha-fetoprotein is not raised in pregnancies with open spina bifida. Prenat Diagn 34:168–171

    Article  CAS  PubMed  Google Scholar 

  103. Sepulveda W, Wong AE, Sepulveda F, Martinez-Ten P, Ximenes R (2012) Fetal magnetic resonance imaging and three-dimensional ultrasound in clinical practice: general aspects. Best Pract Res Clin Obstet Gynaecol 26:575–591

    Article  PubMed  Google Scholar 

  104. Sepulveda W, Ximenes R, Wong AE, Sepulveda F, Martinez-Ten P (2012) Fetal magnetic resonance imaging and three-dimensional ultrasound in clinical practice: applications in prenatal diagnosis. Best Pract Res Clin Obstet Gynaecol 26:593–624

    Article  PubMed  Google Scholar 

  105. Mueller GM, Weiner CP, Yankowitz J (1996) Three-dimensional ultrasound in the evaluation of fetal head and spine anomalies. Obstet Gynecol 88:372–378

    Article  CAS  PubMed  Google Scholar 

  106. Lee W, Chaiworapongsa T, Romero R et al (2002) A diagnostic approach for the evaluation of spina bifida by three-dimensional ultrasonography. J Ultrasound Med 21:619–626

    Article  PubMed  Google Scholar 

  107. Rintoul NE, Sutton LN, Hubbard AM et al (2002) A new look at myelomeningoceles: functional level, vertebral level, shunting, and implications for fetal intervention. Pediatrics 109

  108. Buyukkurt S, Binokay F, Seydaoglu G et al (2013) Prenatal determination of the upper lesion level of spina bifida with three-dimensional ultrasound. Fetal Diagn Ther 33:36–40

    Article  PubMed  Google Scholar 

  109. Requeijo MJ, Bunduki V, Francisco RP, Lopes MA, Ruano R, Zugaib M (2016) Comparison of two- and three-dimensional ultrasonography in the evaluation of lesion level in fetuses with spina bifida. Rev Bras Ginecol Obstet 38:120–126

    Article  PubMed  Google Scholar 

  110. Scheier M, Lachmann R, Petros M, Nicolaides KH (2011) Three-dimensional sonography of the posterior fossa in fetuses with open spina bifida at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 38:625–629

    Article  CAS  PubMed  Google Scholar 

  111. Loureiro T, Ushakov F, Montenegro N, Gielchinsky Y, Nicolaides KH (2012) Cerebral ventricular system in fetuses with open spina bifida at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 39:620–624

    Article  CAS  PubMed  Google Scholar 

  112. Sepulveda F, Budd K, Brugge P, Prayer D (2016) Fetal MRI. In: Saba L (ed) Imaging of the pelvis, musculoskeletal system, and special applications to CAD. CRC Press, Boca Raton, pp 427–454

    Chapter  Google Scholar 

  113. Mangels KJ, Tulipan N, Tsao LY, Alarcon J, Bruner JP (2000) Fetal MRI in the evaluation of intrauterine myelomeningocele. Pediatr Neurosurg 32:124–131

    Article  CAS  PubMed  Google Scholar 

  114. Bulas D (2010) Fetal evaluation of spine dysraphism. Pediatr Radiol 40:1029–1037

    Article  PubMed  Google Scholar 

  115. Egloff A, Bulas D (2015) Magnetic resonance imaging evaluation of fetal neural tube defects. Semin Ultrasound CT MR 36:487–500

    Article  PubMed  Google Scholar 

  116. Sutton LN, Adzick NS, Bilaniuk LT, Johnson MP, Crombleholme TM, Flake AW (1999) Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA 282:1826–1831

    Article  CAS  PubMed  Google Scholar 

  117. Victoria T, Johnson AM, Edgar JC, Zarnow DM, Vossough A, Jaramillo D (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201

    Article  PubMed  Google Scholar 

  118. Naidich TP, Pudlowski RM, Naidich JB, Gornish M, Rodriguez FJ (1980) Computed tomographic signs of the Chiari II malformation. Part I: skull and dural partitions. Radiology 134:65–71

    Article  CAS  PubMed  Google Scholar 

  119. Barkovich AJ, Norman D (1989) Absence of the septum pellucidum: a useful sign in the diagnosis of congenital brain malformations. AJR Am J Roentgenol 152:353–360

    Article  CAS  PubMed  Google Scholar 

  120. Woitek R, Dvorak A, Weber M et al (2014) MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine. PLoS One 9:e112585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Nishino A, Shirane R, So K, Arai H, Suzuki H, Sakurai Y (1998) Cervical myelocystocele with Chiari II malformation: magnetic resonance imaging and surgical treatment. Surg Neurol 49:269–273

    Article  CAS  PubMed  Google Scholar 

  122. Robinson AJ, Blaser S, Vladimirov A, Drossman D, Chitayat D, Ryan G (2015) Foetal “black bone” MRI: utility in assessment of the foetal spine. Br J Radiol 88:20140496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an unrestricted research grant from the Sociedad Profesional de Medicina Fetal ‘Fetalmed’ Limitada, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Sepulveda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepulveda, W., Wong, A.E., Sepulveda, F. et al. Prenatal diagnosis of spina bifida: from intracranial translucency to intrauterine surgery. Childs Nerv Syst 33, 1083–1099 (2017). https://doi.org/10.1007/s00381-017-3445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-017-3445-7

Keywords

Navigation