Skip to main content
Log in

SHH, WNT, and NOTCH pathways in medulloblastoma: when cancer stem cells maintain self-renewal and differentiation properties

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Infant medulloblastoma (MB) is a malignant neuroepithelial embryonal tumor of the cerebellum, believed to derive from precursor granule cells with stem or progenitor cells appearance, and caused by a change in expression profile of genes related to the development. This work aims to study the expression profile of these genes in MB tumors, correlating with clinicopathological characteristics.

Methods

We quantified, by qPCR in 40 MB tumor samples, the expression of genes in HH (PTCH1, PTCH2, and GLI1), WNT (APC, CTNNB1, WIF1, and DKK2), and NOTCH pathways (NOTCH2 and HES1), which have a crucial role in development, and genes as MYCC, MYCN, and TERT, correlating this findings to patient’s clinicopathological characteristics.

Results

Considering the universal RNA as our control sample, and considering the median of gene expression in the control samples as our cutoff, we observed that HES1 gene showed decreased expression compared to control (p = 0.0059), but patients with HES1 overexpression were directly related to a shorter survival (p = 0.0165). Individuals with higher GLI1 gene expression had significant shorter survival (p = 0.0469), and high expression was prevalent in patients up to 5 years old (p = 0.0479). Patients showing high PTCH2 expression were related to worse survival (p = 0.0426), and it was correlated with GLI1 high expression (p = 0.0094). We also observed a concomitant overexpression of WIF1 and DKK2 genes in a subgroup of MB samples (n = 11, p = 0.0118).

Conclusions

Our results suggest the presence of activated developmental signaling pathways in MB, which are important for cell proliferation and maintenance, and that may be targeted for novel therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Artavanis-Tsakonas S, Muskavitch MAT (2010) Notch: the past, the present and the future. Current Topics in Developmental Biology, vol. 92

  2. Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133(13):2467–2476, Epub 2006 May 25

    Article  CAS  PubMed  Google Scholar 

  3. Bell E, Chen L, Liu T, Marshall GM, Lunec J, Tweddle DA (2010) MYCN oncoprotein targets and their therapeutic potential. Cancer Lett 293(2):144–157

    Article  CAS  PubMed  Google Scholar 

  4. Ehebauer M, Hayward P, Martinez-Arias A (2006) Notch signaling pathway. Sci STKE

  5. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol Mech Dis 3:341–365

    Article  CAS  Google Scholar 

  6. Guessous F, Li Y, Abounader R (2008) Signaling pathways in medulloblastoma. J Cell Physiol 217:577–583

    Article  CAS  PubMed  Google Scholar 

  7. Kageyama R, Masamizu Y, Niwa Y (2007) Oscillator mechanism of notch pathway in the segmentation clock. Dev Dyn 236(6):1403–1409

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R (2009) The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 23:1870–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3(8):e3088

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro-Oncology 13(7):736–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lee Y, Miller HL, Russell HR, Boyd K, Curran T, McKinnon PJ (2006) Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 66(14):6964–6971

    Article  CAS  PubMed  Google Scholar 

  12. Lutz W, Leon J, Eilers M (2002) Contributions of MYC to tumorigenesis. Biochem Biophys Acta 1602:61–71

    CAS  PubMed  Google Scholar 

  13. Machold R, Hayashi S, Rutlin M et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    Article  CAS  PubMed  Google Scholar 

  14. Manoranjan B, Venugopal C, McFarlane N, Dobe BW, Dunn SE, Scheinemann K, Singh S (2012) Medulloblastoma stem cells: where development and cancer cross pathways. Pediatric Research 71(4):516–522

    Article  CAS  PubMed  Google Scholar 

  15. Northcott PA, Jones DTW, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM (2012) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12

  16. Park AK, Lee SJ, Phi JH, Wang KC, Kim DG, Cho BK, Haberler C, Fattet S, Dufour C, Puget S, Sainte-Rose C, Bourdeaut F, Grill J, Delattre O, Kim SK, Park WY (2012) Prognostic classification of pediatric medulloblastoma based on chromosome 17p loss, expression of MYCC and MYCN, and Wnt pathway activation. Neuro-Oncology 14(2):203–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Parsons W, Li M, Zhang X et al (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 331:435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Peris-Bonet R, Martinez-Garcia C, Lacour B (2006) Childhood central nervous system tumours—incidence and survival in Europe (1978–1997): report from Automated Childhood Cancer Information System project. Eur J Cancer 42:2064–2080

    Article  PubMed  Google Scholar 

  19. Pierfelice T, Alberi L, Gaiano N. (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69

  20. Pietsch T, Taylor MD, Rutka JT (2004) Molecular pathogenesis of childhood brain tumors. J Neurooncol 70:203–215

    Article  PubMed  Google Scholar 

  21. Pizzo PA, Poplack DG (2010) Principles & practice of pediatric oncology. 6a Edição. Lippincott Williams & Wilkinsm, Philadelphiam

    Google Scholar 

  22. Ponzielli R, Katz S, Barsyte-Lovejoy D, Penn LZ (2005) Cancer therapeutics: targeting the dark side of MYC. Eur J Cancer 41(16):2485–2501, Epub 2005 Oct 20

    Article  CAS  PubMed  Google Scholar 

  23. Rahnama F, Toftgård R, Zaphiropoulos PG (2004) Distinct roles of PTCH2 splice variants in hedgehog signalling. Biochem J 378(Pt 2):325–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rubinstein LJ (1985) Embryonal central neuroepithelial tumors and their differentiating potential. A cytogenetic view of a complex neuro-oncological problem. J Neurosurg 62:795–805

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz i Altaba A, Sanchez P, Dahmane N (2002) Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2:361–372

    Article  CAS  PubMed  Google Scholar 

  26. Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG (2010) The notch target Hes1 directly modulates Gli1 expression and hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 16(24):6060–6070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Shimojo H, Ohtsuka T, Kageyama R (2008) Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58(1):52–64

    Article  CAS  PubMed  Google Scholar 

  28. Swartling FJ, Grimmer MR, Hackett CS, Northcott PA, Fan QW et al (2010) Pleiotropic role for MYCN in medulloblastoma. Genes Dev 24(10):1059–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM. (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol

  30. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6:1278–1281

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, Prochownik EV, Nikiforov MA (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27:1905–1915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61:513–516

    CAS  PubMed  Google Scholar 

  33. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R (1999) Direct activation of TERT transcription by c-MYC. Nat Genet 21:220–224

    Article  CAS  PubMed  Google Scholar 

  34. Ying S, Häcker G (2003) Apoptosis induced by direct triggering of mitochondrial apoptosis proceeds in the near-absence of some apoptotic markers. Apoptosis 12(11):2003–2011, Epub 2007 Aug 14

    Article  Google Scholar 

  35. Zaphiropoulos PG, Undén AB, Rahnama F, Hollingsworth RE, Toftgård R (1999) PTCH2, a novel human patched gene, undergoing alternative splicing and up-regulated in basal cell carcinomas. Cancer Res 59(4):787–792

    CAS  PubMed  Google Scholar 

  36. Zurawel RH, Chiappa SA, Allen C, Raffel C (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58(5):896–899

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FAPESP (The State of São Paulo Research Foundation: 2011/19629-0; 2011/16221-0) and GRAACC (Grupo de Apoio ao Adolescente e Criança com Câncer).

Ethical standards

Samples from each MB tumor were collected after informed consent was signed by patients/guardians according to the university’s institutional review board (IRB/Federal University of São Paulo no. 0474/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Regina Caminada Toledo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascaro Cordeiro, B., Dias Oliveira, I., de Seixas Alves, M.T. et al. SHH, WNT, and NOTCH pathways in medulloblastoma: when cancer stem cells maintain self-renewal and differentiation properties. Childs Nerv Syst 30, 1165–1172 (2014). https://doi.org/10.1007/s00381-014-2403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-014-2403-x

Keywords

Navigation