Skip to main content

Advertisement

Log in

MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in heart failure rats

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Chronic heart failure (CHF), a conventional, complex, and severe syndrome, is generally defined by myocardial output inadequate to satisfy the metabolic requirements of body tissues. Recently, miR-568 was identified to be down-regulated in CHF patients’ sera and negatively correlated with left ventricular mass index in symptomatic CHF patients with systolic dysfunction. Nevertheless, the role of miR-568 during CHF development remains obscure. The current study is aimed to investigate the role of miR-568 in CHF. The MTT assay, flow cytometry analysis, RT-qPCR analysis, western blot analysis and luciferase reporter assays were conducted to figure out the function and potential mechanism of miR-568 in vitro. Rats were operated with aortic coarctation to establish CHF animal model. The effects of miR-568 and SMURF2 on CHF rats were evaluated by hematoxylin–eosin staining, Masson’s staining, serum index testing, cardiac ultrasound detection, and TUNEL staining assays. We discovered that miR-568 level was downregulated by H2O2 treatment in cardiomyocytes. In mechanism, miR-568 directly targeted and negatively regulated SMURF2. In function, SMURF2 overexpression reversed the effects of miR-568 on cardiac function and histological changes in vivo. Additionally, SMURF2 overexpression reversed the effects of miR-568 on the content of LDH, AST, CK and CK-MB in vivo. Moreover, SMURF2 overexpression reversed the effects of miR-568 on oxidative stress response in vivo. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in CHF rats. This discovery may serve as a potential biomarker for CHF treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Gedela M, Khan M, Jonsson O (2015) Heart failure. S D Med. 68(9):403–405

    PubMed  Google Scholar 

  2. Hoffman TM (2016) Chronic heart failure. Pediatr Crit Care Med 17(8 Suppl 1):S119-123

    Article  PubMed  Google Scholar 

  3. Rogers C, Bush N (2015) Heart failure: pathophysiology, diagnosis, medical treatment guidelines, and nursing management. Nurs Clin North Am 50(4):787–799

    Article  PubMed  Google Scholar 

  4. Capriotti T, Micari M (2019) Chronic heart failure treatment with the left ventricular assist device. Home Healthc Now 37(4):190–197

    Article  PubMed  Google Scholar 

  5. Maggioni AP (2015) Epidemiology of heart failure in Europe. Heart Fail Clin 11(4):625–635

    Article  PubMed  Google Scholar 

  6. Wong LL, Wang J, Liew OW, Richards AM, Chen YT (2016) MicroRNA and heart failure. Int J Mol Sci 17(4):502

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wojciechowska A, Braniewska A, Kozar-Kamińska K (2017) MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med 26(5):865–874

    Article  PubMed  Google Scholar 

  8. Bernardo BC, Ooi JY, Lin RC, McMullen JR (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792

    Article  CAS  PubMed  Google Scholar 

  9. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207

    Article  CAS  PubMed  Google Scholar 

  10. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  11. Yang Q, Pan W, Qian L (2017) Identification of the miRNA-mRNA regulatory network in multiple sclerosis. Neurol Res 39(2):142–151

    Article  CAS  PubMed  Google Scholar 

  12. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA (2016) MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 18(5):457–468

    Article  CAS  PubMed  Google Scholar 

  14. Garg A, Foinquinos A, Jung M, Janssen-Peters H, Biss S, Bauersachs J, Gupta SK, Thum T (2020) MiRNA-181a is a novel regulator of aldosterone-mineralocorticoid receptor-mediated cardiac remodelling. Eur J Heart Fail 22(8):1366–1377

    Article  CAS  PubMed  Google Scholar 

  15. Gao F, Kataoka M, Liu N, Liang T, Huang ZP, Gu F, Ding J, Liu J, Zhang F, Ma Q, Wang Y, Zhang M, Hu X, Kyselovic J, Hu X, Pu WT, Wang J, Chen J, Wang DZ (2019) Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun 10(1):1802

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li W, Kong LB, Li JT, Guo ZY, Xue Q, Yang T, Meng YL, Jin BQ, Wen WH, Yang AG (2014) MiR-568 inhibits the activation and function of CD4+ T cells and Treg cells by targeting NFAT5. Int Immunol 26(5):269–281

    Article  CAS  PubMed  Google Scholar 

  17. Moschos MM, Droutsas K, Sioziou A, Dettoraki M, Gazouli M (2016) Mutational analysis of Pre-miR-184 and hsa-mir-568 in greek patients with sporadic keratoconus. Cornea 35(5):631–633

    Article  PubMed  Google Scholar 

  18. Cakmak HA, Coskunpinar E, Ikitimur B, Barman HA, Karadag B, Tiryakioglu NO, Kahraman K, Vural VA (2015) The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown) 16(6):431–437

    Article  CAS  PubMed  Google Scholar 

  19. Ikitimur B, Cakmak HA, Coskunpinar E, Barman HA, Vural VA (2015) The relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiol Pol 73(9):740–746

    Article  PubMed  Google Scholar 

  20. Eichhorn PJ, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Martínez-Sáez E, Aura C, Barba I, Peg V, Prat A, Cuartas I, Jimenez J, García-Dorado D, Sahuquillo J, Bernards R, Baselga J, Seoane J (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18(3):429–435

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Huang XR, Chen HY, Fung E, Liu J, Lan HY (2017) Deletion of angiotensin-converting enzyme-2 promotes hypertensive nephropathy by targeting smad7 for ubiquitin degradation. Hypertension 70(4):822–830

    Article  CAS  PubMed  Google Scholar 

  22. Tan Y, Chen Y, Du M, Peng Z, Xie P (2019) USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis. Cell Signal 53:49–58

    Article  CAS  PubMed  Google Scholar 

  23. Barbosa DM, Fahlbusch P, Herzfeld de Wiza D, Jacob S, Kettel U, Al-Hasani H, Krüger M, Ouwens DM, Hartwig S, Lehr S, Kotzka J, Knebel B (2020) Rhein, a novel Histone Deacetylase (HDAC) inhibitor with antifibrotic potency in human myocardial fibrosis. Sci Rep 10(1):4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cunnington RH, Nazari M, Dixon IM (2009) c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new targets for managing myofibroblast function and cardiac fibrosis. Can J Physiol Pharmacol 87(10):764–772

    Article  CAS  PubMed  Google Scholar 

  25. Dong W, Xie F, Chen XY, Huang WL, Zhang YZ, Luo WB, Chen J, Xie MT, Peng XP (2019) Inhibition of Smurf2 translation by miR-322/503 protects from ischemia-reperfusion injury by modulating EZH2/Akt/GSK3β signaling. Am J Physiol Cell Physiol 317(2):C253-c261

    Article  CAS  PubMed  Google Scholar 

  26. Hagler MA, Hadley TM, Zhang H, Mehra K, Roos CM, Schaff HV, Suri RM, Miller JD (2013) TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res 99(1):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, Segura A, Willerson JT, Martin JF (2017) Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550(7675):260–264

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu SY, Dong B, Fang ZF, Hu XQ, Tang L, Zhou SH (2018) Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J Cell Mol Med 22(10):4886–4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Su Q, Zhang P, Yu D, Wu Z, Li D, Shen F, Liao P, Yin G (2019) Upregulation of miR-93 and inhibition of LIMK1 improve ventricular remodeling and alleviate cardiac dysfunction in rats with chronic heart failure by inhibiting RhoA/ROCK signaling pathway activation. Aging (Albany NY) 11(18):7570–7586

    Article  CAS  PubMed  Google Scholar 

  30. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975

    Article  PubMed  Google Scholar 

  31. Špinar J, Špinarová L, Vítovec J (2018) Pathophysiology, causes and epidemiology of chronic heart failure. Vnitr Lek 64(9):834–838

    Article  PubMed  Google Scholar 

  32. Bloom MW, Greenberg B, Jaarsma T, Januzzi JL, Lam CSP, Maggioni AP, Trochu JN, Butler J (2017) Heart failure with reduced ejection fraction. Nat Rev Dis Primers 3:17058

    Article  PubMed  Google Scholar 

  33. Luo Y, Sun Z, Hu P, Wu Y, Yu W, Huang S (2018) Effect of aqueous extract from descurainia sophia (L.) webb ex prantl on ventricular remodeling in chronic heart failure rats. Evid Based Comple Altert Med. 2018:1904081

    Google Scholar 

  34. Zhang Q, Hu LQ, Yin CS, Chen P, Li HQ, Sun X, Yan G (2014) Catechin ameliorates cardiac dysfunction in rats with chronic heart failure by regulating the balance between Th17 and treg cells. Inflamm Res 63(8):619–628

    Article  CAS  PubMed  Google Scholar 

  35. Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JG (2014) Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 50(2):409–418

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shah P, Bristow MR, Port JD (2017) MicroRNAs in heart failure, cardiac transplantation, and myocardial recovery: biomarkers with therapeutic potential. Curr Heart Fail Rep 14(6):454–464

    Article  CAS  PubMed  Google Scholar 

  37. Castaldi A, Zaglia T, Di Mauro V, Carullo P, Viggiani G, Borile G, Di Stefano B, Schiattarella GG, Gualazzi MG, Elia L, Stirparo GG, Colorito ML, Pironti G, Kunderfranco P, Esposito G, Bang ML, Mongillo M, Condorelli G, Catalucci D (2014) MicroRNA-133 modulates the β1-adrenergic receptor transduction cascade. Circ Res 115(2):273–283

    Article  CAS  PubMed  Google Scholar 

  38. Kumarswamy R, Lyon AR, Volkmann I, Mills AM, Bretthauer J, Pahuja A, Geers-Knörr C, Kraft T, Hajjar RJ, Macleod KT, Harding SE, Thum T (2012) SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 33(9):1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biswas A, Rabbani SI, Devi K (2012) Influence of pioglitazone on experimental heart failure and hyperlipidemia in rats. Indian J Pharmacol 44(3):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB (2018) Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities. Free Radic Biol Med 129:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301(6):H2181-2190

    Article  CAS  PubMed  Google Scholar 

  42. Tian C, Hu G, Gao L, Hackfort BT, Zucker IH (2020) Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. J Mol Cell Cardiol 143:120–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zou.

Ethics declarations

Conflicts of interest

The authors declare that there are no competing interests in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yin, J. & Zou, Y. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in heart failure rats. Heart Vessels 38, 857–868 (2023). https://doi.org/10.1007/s00380-022-02231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-022-02231-8

Keywords

Navigation