Skip to main content
Log in

Recurrent germline mutations as genetic markers for aortic root dilatation in bicuspid aortic valve patients

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV) is characterized by elevated risk of aortic dilatation and aneurysm. Although genetic susceptibility is suspected to influence on the development of BAV aortopathy, clinical application of genetic markers still needs validation in BAV entities with strictly defined phenotypic features. The ‘root phenotype’ represents a young, male predominant, and severely aortic regurgitant BAV population prone to aortic root dilatation. The present study launched a two-step genetic survey to evaluate the clinical significance of germline genetic markers in BAV patients. The whole-exome sequencing (WES) cohort consisted of 13 BAV patients with ‘root phenotype’ under the age of 40 years. We identified 28 different heterozygous missense mutations in 19 genes from the WES cohort, among which six variants (COL1A2 R882C, COL5A1 I1161F, ACVRL1 R218W, NOTCH1 P1227S, MYLK S243W, MYLK D717Y) were identified as pathogenic variants via unanimous agreement of in silico prediction tool analysis, and three variants (C1R I345L, TGFBR2 V216I, FBN2 G475V) were identified as recurrent variants. The panel of nine genetic markers was tested in an independent validation cohort of 154 BAV patients consecutively included from January to May 2018 in our institution. The validation cohort demonstrated 71.4% male predominance and the average age of 57 ± 13 years, among which 26.6% showed aortic root dilatation and 66.9% ascending aortic dilatation. Genetic markers were found in 32 patients, including 18 with C1R I345L, 11 with TGFBR2 V216I, 2 with FBN2 G475V, and 1 with both TGFBR2 V216I and MYLK D717Y. BAV patients carrying these genetic markers demonstrated younger age [(51 ± 12) vs. (58 ± 13) years, P = 0.014], more moderate to severe aortic regurgitation (56.2% vs. 33.6%, P = 0.019), elevated prevalence of mitral valve prolapse (9.4% vs. 0.8%, P = 0.028) and aortic root dilatation (62.5% vs. 17.2%, P < 0.001) but not ascending aortic dilatation than those without these markers. The early-onset ‘root phenotype’ entities displayed great value for BAV genetic surveys. As one of the promising complements of the current risk stratification system, recurrent germline mutations in TGFBR2, C1R, FBN2 genes could be identified and applied as genetic markers of elevated susceptibility for aortic root but not ascending aortic dilatation among BAV patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Borger MA, Fedak PWM, Stephens EH, Gleason TG, Girdauskas E, Ikonomidis JS, Khoynezhad A, Siu SC, Verma S, Hope MD, Cameron DE, Hammer DF, Coselli JS, Moon MR, Sundt TM, Barker AJ, Markl M, Della Corte A, Michelena HI, Elefteriades JA (2018) The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: full online-only version. J Thorac Cardiovasc Surg 156(2):e41–e74

    Article  Google Scholar 

  2. Verma S, Siu SC (2014) Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 370(20):1920–1929

    Article  CAS  Google Scholar 

  3. Michelena HI, Desjardins VA, Avierinos JF, Russo A, Nkomo VT, Sundt TM, Pellikka PA, Tajik AJ, Enriquez-Sarano M (2008) Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation 117(21):2776–2784

    Article  Google Scholar 

  4. Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PW, Malaisrie SC, McCarthy P, Collins J, Carr J, Markl M (2014) Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129(6):673–682

    Article  CAS  Google Scholar 

  5. Shan Y, Li J, Wang Y, Wu B, Barker AJ, Markl M, Wang C, Wang X, Shu X (2019) Aortic stenosis exacerbates flow aberrations related to bicuspid aortic valve fusion pattern and the aortopathy phenotype. Eur J Cardiothorac Surg 55(3):534–542

    Article  Google Scholar 

  6. Yassine NM, Shahram JT, Body SC (2017) Pathogenic mechanisms of bicuspid aortic valve aortopathy. Front Physiol 8:687

    Article  Google Scholar 

  7. Girdauskas E, Geist L, Disha K, Kazakbaev I, Groß T, Schulz S, Ungelenk M, Kuntze T, Reichenspurner H, Kurth I (2017) Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results. Eur J Cardiothorac Surg 52(1):156–162

    Article  Google Scholar 

  8. Wang Y, Wu B (2018) From phenotype to genotype: towards identifying recurrent genetic aberrations in bicuspid aortic valve disease. Eur J Cardiothorac Surg 54(1):198–199

    Article  Google Scholar 

  9. Della Corte A, Body SC, Booher AM, Schaefers H-J, Milewski RK, Michelena HI, Evangelista A, Pibarot P, Mathieu P, Limongelli G, Shekar PS, Aranki SF, Ballotta A, Di Benedetto G, Sakalihasan N, Nappi G, Eagle KA, Bavaria JE, Frigiola A, Sundt TM, International Bicuspid Aortic Valve Consortium (BAVCon) Investigators (2014) Surgical treatment of bicuspid aortic valve (BAV) disease: knowledge gaps and research perspectives. J Thorac Cardiovasc Surg 147(6):1749–1757

    Article  Google Scholar 

  10. Maredia AK, Greenway SC, Verma S, Fedak PWM (2018) Bicuspid aortic valve-associated aortopathy: update on biomarkers. Curr Opin Cardiol 33(2):134–139

    Article  Google Scholar 

  11. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274

    Article  CAS  Google Scholar 

  12. Girdauskas E, Schulz C, Borger MA, Mierzwa M, Kuntze T (2011) Transforming growth factor-beta receptor type II mutation in a patient with bicuspid aortic valve disease and intraoperative aortic dissection. Ann Thorac Surg 91(5):e70–e71

    Article  Google Scholar 

  13. Foffa I, Ait Alì L, Panesi P, Mariani M, Festa P, Botto N, Vecoli C, Andreassi MG (2013) Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet 14:44

    Article  CAS  Google Scholar 

  14. Wooten EC, Iyer LK, Montefusco MC, Hedgepeth AK, Payne DD, Kapur NK, Housman DE, Mendelsohn ME, Huggins GS (2010) Application of gene network analysis techniques identifies AXIN1/PDIA2 and Endoglin haplotypes associated with bicuspid aortic valve. PLoS ONE 5(1):e8830

    Article  Google Scholar 

  15. Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL, Mibava Leducq Consortium (2017) Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor. Front Physiol 8:400

    Article  Google Scholar 

  16. Girdauskas E, Rouman M, Disha K, Espinoza A, Misfeld M, Borger MA, Kuntze T (2015) Aortic dissection after previous aortic valve replacement for bicuspid aortic valve disease. J Am Coll Cardiol 66(12):1409–1411

    Article  Google Scholar 

  17. Girdauskas E, Disha K, Rouman M, Espinoza A, Borger MA, Kuntze T (2015) Aortic events after isolated aortic valve replacement for bicuspid aortic valve root phenotype: echocardiographic follow-up study. Eur J Cardiothorac Surg 48(4):e71–e76

    Article  Google Scholar 

  18. Wang Y, Wu B, Li J, Dong L, Wang C, Shu X (2016) Impact of aortic insufficiency on ascending aortic dilatation and adverse aortic events after isolated aortic valve replacement in patients with a bicuspid aortic valve. Ann Thorac Surg 101(5):1707–1714

    Article  Google Scholar 

  19. Bonachea EM, Chang SW, Zender G, LaHaye S, Fitzgerald-Butt S, McBride KL, Garg V (2014) Rare GATA5 sequence variants identified in individuals with bicuspid aortic valve. Pediatr Res 76(2):211–216

    Article  CAS  Google Scholar 

  20. Prakash SK, Bossé Y, Muehlschlegel JD, Michelena HI, Limongelli G, Della Corte A, Pluchinotta FR, Russo MG, Evangelista A, Benson DW, Body SC, Milewicz DM, BAVCon Investigators (2014) A roadmap to investigate the genetic basis of bicuspid aortic valve and its complications: insights from the International BAVCon (Bicuspid Aortic Valve Consortium). J Am Coll Cardiol 64(8):832–839

    Article  CAS  Google Scholar 

  21. Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH, Liu L, Tranquilli M, Bale AE, Elefteriades JA (2015) Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg 100(5):1604–1611

    Article  Google Scholar 

  22. Isselbacher EM, Lino Cardenas CL, Lindsay ME (2016) Hereditary influence in thoracic aortic aneurysm and dissection. Circulation 133(24):2516–2528

    Article  CAS  Google Scholar 

  23. Brownstein AJ, Kostiuk V, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA (2018) Genes associated with thoracic aortic aneurysm and dissection: 2018 update and clinical implications. Aorta (Stamford) 6(1):13–20

    Article  Google Scholar 

  24. Prakash SK, Yetman A, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Jennings J, Citro R, Guo D, De Marco M, Tretter JT, Body SC, EBAV Investigators (2019) Recurrent genomic copy number variants implicate new candidate genes for early onset bicuspid aortic valve disease. J Am Coll Cardiol 73(9 Supplement 1):620

    Article  Google Scholar 

  25. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Eng J Med 355(8):788–798

    Article  CAS  Google Scholar 

  26. Doyle JJ, Gerber EE, Dietz HC (2012) Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 586(14):2003–2015

    Article  CAS  Google Scholar 

  27. Albinsson S, Della Corte A, Alajbegovic A, Krawczyk KK, Bancone C, Galderisi U, Cipollaro M, De Feo M, Forte A (2017) Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta. Heart Vessels 32(6):750–767

    Article  Google Scholar 

  28. Tobin SW, Alibhai FJ, Lee MM, Yeganeh A, Wu J, Li SH, Guo J, Tsang K, Tumiati L, Rocha R, Butany J, Yau TM, Ouzounian M, David TE, Weisel RD, Li RK (2019) Novel mediators of aneurysm progression in bicuspid aortic valve disease. J Mol Cell Cardiol 132:71–83

    Article  CAS  Google Scholar 

  29. Pulignani S, Borghini A, Foffa I, Vecoli C, Ait-Alì L, Andreassi MG (2020) Functional characterization and circulating expression profile of dysregulated microRNAs in BAV-associated aortopathy. Heart Vessels 35(3):432–440

    Article  Google Scholar 

  30. Kapferer-Seebacher I, Pepin M, Werner R, Aitman TJ, Nordgren A, Stoiber H, Thielens N, Gaboriaud C, Amberger A, Schossig A, Gruber R, Giunta C, Bamshad M, Björck E, Chen C, Chitayat D, Dorschner M, Schmitt-Egenolf M, Hale CJ, Hanna D, Hennies HC, Heiss-Kisielewsky I, Lindstrand A, Lundberg P, Mitchell AL, Nickerson DA, Reinstein E, Rohrbach M, Romani N, Schmuth M, Silver R, Taylan F, Vandersteen A, Vandrovcova J, Weerakkody R, Yang M, Pope FM, Molecular Basis of Periodontal EDS Consortium, Byers PH, Zschocke J (2016) Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents of C1r and C1s of complement. Am J Hum Genet 99(5):1005–1014

    Article  CAS  Google Scholar 

  31. Frédéric MY, Monino C, Marschall C, Hamroun D, Faivre L, Jondeau G, Klein HG, Neumann L, Gautier E, Binquet C, Maslen C, Godfrey M, Gupta P, Milewicz D, Boileau C, Claustres M, Béroud C, Collod-Béroud G (2009) The FBN2 gene: new mutations, locus-specific database (Universal Mutation Database FBN2), and genotype-phenotype correlations. Hum Mutat 30(2):181–190

    Article  Google Scholar 

  32. Takeda N, Morita H, Fujita D, Inuzuka R, Taniguchi Y, Imai Y, Hirata Y, Komuro I (2015) Congenital contractural arachnodactyly complicated with aortic dilatation and dissection: case report and review of literature. Am J Med Genet A 167A(10):2382–2387

    Article  Google Scholar 

  33. Schubert JA, Landis BJ, Shikany AR, Hinton RB, Ware SM (2016) Clinically relevant variants identified in thoracic aortic aneurysm patients by research exome sequencing. Am J Med Genet A 170A(5):1288–1294

    Article  Google Scholar 

  34. Wang Y, Wu B, Li J, Liu H, Shu X (2020) Distribution patterns of valvular and vascular complications in bicuspid aortic valve: a hospital-based study of 3673 adult Chinese patients. Int Heart J 61(2):273–280

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by National Natural Science Foundation of China (Grant Nos. 82071991, 81600090, 81300232, 81500194, 81570422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongshi Wang.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Li, J., Wang, Y. et al. Recurrent germline mutations as genetic markers for aortic root dilatation in bicuspid aortic valve patients. Heart Vessels 36, 530–540 (2021). https://doi.org/10.1007/s00380-020-01710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-020-01710-0

Keywords

Navigation