Skip to main content

Advertisement

Log in

The relationship between serum indoxyl sulfate and the renal function after catheter ablation of atrial fibrillation in patients with mild renal dysfunction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Indoxyl sulfate (IS), a protein-bound uremic toxin, induces renal disorders and atrial fibrillation (AF). It is well known that renal dysfunction is a risk factor for AF and radiofrequency catheter ablation (RFCA) improves the renal function. However, the improvement in the renal function after RFCA in patients with early stage chronic kidney disease (CKD) and the serial changes in the IS level have not been fully elucidated. This study aimed to investigate whether IS affects the improvement in the renal function. A total of 91 consecutive patients with mild kidney dysfunction (CKD stage I–II) who underwent RFCA and maintained sinus rhythm were prospectively enrolled. The plasma IS level and estimated glomerular filtration rate (eGFR) were determined before, 3 months, and 1 year after RFCA. The patients were divided according to the IS quartiles (Q1–4; < 0.4, 0.4–0.7, 0.7–1.2, and > 1.2 μg/ml). There was no significant difference in the eGFR among the IS quartiles. A significantly higher eGFR improvement rate was obtained for IS-Q4 than the other quartiles (p = 0.039). The IS-Q4 IS level significantly decreased at 1 year after RFCA (1.8 ± 0.8 to 1.2 ± 0.7 μg/ml, p < 0.01). The multivariable logistic model revealed that a high-IS level (IS-Q4) was an independent predictor of an eGFR improvement (OR 3.33; 95% CI 1.16–9.59; p = 0.026). A high-IS level reduction after RFCA improved the renal function in AF patients with mild kidney dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ananthapanyasut W, Napan S, Rudolph EH, Harindhanavudhi T, Ayash H, Guglielmi KE, Lerma EV (2010) Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease. Clin J Am Soc Nephrol 5:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  2. Horio T, Iwashima Y, Kamide K, Tokudome T, Yoshihara F, Nakamura S, Kawano Y (2010) Chronic kidney disease as an independent risk factor for new-onset atrial fibrillation in hypertensive patients. J Hypertens 28:1738–1744

    Article  CAS  PubMed  Google Scholar 

  3. Iguchi Y, Kimura K, Kobayashi K, Aoki J, Terasawa Y, Sakai K, Uemura J, Shibazaki K (2008) Relation of atrial fibrillation to glomerular filtration rate. Am J Cardiol 102:1056–1059

    Article  PubMed  Google Scholar 

  4. Navaravong L, Barakat M, Burgon N, Mahnkopf C, Koopmann M, Ranjan R, Kholmovski E, Marrouche N, Akoum N (2015) Improvement in estimated glomerular filtration rate in patients with chronic kidney disease undergoing catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol 26:21–27

    Article  PubMed  Google Scholar 

  5. Soliman EZ, Prineas RJ, Go AS, Xie D, Lash JP, Rahman M, Ojo A, Teal VL, Jensvold NG, Robinson NL, Dries DL, Bazzano L, Mohler ER, Wright JT, Feldman HI, Chronic Renal Insufficiency Cohort (CRIC) Study Group (2010) Chronic kidney disease and prevalent atrial fibrillation: the chronic renal insufficiency cohort (CRIC). Am Heart J 159:1102–1107

    Article  Google Scholar 

  6. Takahashi Y, Takahashi A, Kuwahara T, Okubo K, Fujino T, Takagi K, Nakashima E, Kamiishi T, Hikita H, Hirao K, Isobe M (2011) Renal function after catheter ablation of atrial fibrillation. Circulation 124:2380–2387

    Article  PubMed  Google Scholar 

  7. Watanabe H, Watanabe T, Sasaki S, Nagai K, Roden DM, Aizawa Y (2009) Close bidirectional relationship between chronic kidney disease and atrial fibrillation: the Niigata preventive medicine study. Am Heart J 158:629–636

    Article  PubMed  Google Scholar 

  8. Yoshikawa D, Ishii H, Suzuki S, Takeshita K, Kumagai S, Hayashi M, Niwa T, Izawa H, Murohara T (2014) Plasma indoxyl sulfate and estimated glomerular filtration rate. Circ J 78:2477–2482

    Article  PubMed  Google Scholar 

  9. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA, European Uremic Toxin Work Group (EUTox) (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4:1551–1558

    Article  CAS  Google Scholar 

  10. Niwa T, Takeda N, Tatematsu A, Maeda K (1988) Accumulation of indoxyl sulfate, an inhibitor of drug-binding, in uremic serum as demonstrated by internal-surface reversed-phase liquid chromatography. Clin Chem 34:2264–2267

    CAS  PubMed  Google Scholar 

  11. Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, Nawata T, Shimada T, Takahashi N, Shibata H (2015) Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction. J Am Heart Assoc 4:e002023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lekawanvijit S, Kompa AR, Manabe M, Wang BH, Langham RG, Nishijima F, Kelly DJ, Krum H (2012) Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS One 7:e41281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niwa T, Ise M (1994) Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med 124:96–104

    CAS  PubMed  Google Scholar 

  14. Shimazu S, Hirashiki A, Okumura T, Yamada T, Okamoto R, Shinoda N, Takeshita K, Kondo T, Niwa T, Murohara T (2013) Association between indoxyl sulfate and cardiac dysfunction and prognosis in patients with dilated cardiomyopathy. Circ J 77:390–396

    Article  CAS  PubMed  Google Scholar 

  15. Sun CY, Hsu HH, Wu MS (2013) p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol Dial Transplant 28:70–78

    Article  CAS  PubMed  Google Scholar 

  16. Ishani A, Grandits GA, Grimm RH, Svendsen KH, Collins AJ, Prineas RJ, Neaton JD (2006) Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J Am Soc Nephrol 17:1444–1452

    Article  CAS  PubMed  Google Scholar 

  17. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, Agewall S, Camm J, Baron Esquivias G, Budts W, Carerj S, Casselman F, Coca A, De Caterina R, Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M, Hohnloser SH, Kolh P, Lip GY, Manolis A, McMurray J, Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, Van Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K (2016) 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 18:1609–1678

    Article  PubMed  Google Scholar 

  18. Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  Google Scholar 

  19. Issac TT, Dokainish H, Lakkis NM (2007) Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. J Am Coll Cardiol 50:2021–2028

    Article  CAS  PubMed  Google Scholar 

  20. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, Brunet P (2007) The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5:1302–1308

    Article  CAS  PubMed  Google Scholar 

  21. Shimoishi K, Anraku M, Kitamura K, Tasaki Y, Taguchi K, Hashimoto M, Fukunaga E, Maruyama T, Otagiri M (2007) An oral adsorbent, AST-120 protects against the progression of oxidative stress by reducing the accumulation of indoxyl sulfate in the systemic circulation in renal failure. Pharm Res 24:1283–1289

    Article  CAS  PubMed  Google Scholar 

  22. Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J (2005) Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 112:1266–1273

    Article  CAS  PubMed  Google Scholar 

  23. Chen WT, Chen YC, Hsieh MH, Huang SY, Kao YH, Chen YA, Lin YK, Chen SA, Chen YJ (2015) The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis. J Cardiovasc Electrophysiol 26:203–210

    Article  PubMed  Google Scholar 

  24. Enomoto A, Takeda M, Tojo A, Sekine T, Cha SH, Khamdang S, Takayama F, Aoyama I, Nakamura S, Endou H, Niwa T (2002) Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol 13:1711–1720

    Article  CAS  PubMed  Google Scholar 

  25. Huc T, Nowinski A, Drapala A, Konopelski P, Ufnal M (2018) Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 130:172–179

    Article  CAS  PubMed  Google Scholar 

  26. Konopelski P, Ufnal M (2018) Indoles—gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr Drug Metab. https://doi.org/10.2174/1389200219666180427164731

    Article  PubMed  Google Scholar 

  27. Providencia R, Fernandes A, Paiva L, Faustino A, Barra S, Botelho A, Trigo J, Nascimento J, Leitao-Marques A (2013) Decreased glomerular filtration rate and markers of left atrial stasis in patients with nonvalvular atrial fibrillation. Cardiology 124:3–10

    Article  PubMed  Google Scholar 

  28. Muellerleile K, Groth M, Steven D, Hoffmann BA, Saring D, Radunski UK, Lund GK, Adam G, Rostock T, Willems S (2013) Cardiovascular magnetic resonance demonstrates reversible atrial dysfunction after catheter ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol 24:762–767

    Article  PubMed  Google Scholar 

  29. Machino-Ohtsuka T, Seo Y, Ishizu T, Yanaka S, Nakajima H, Atsumi A, Yamamoto M, Kawamura R, Koshino Y, Machino T, Kuroki K, Yamasaki H, Igarashi M, Sekiguchi Y, Tada H, Aonuma K (2013) Significant improvement of left atrial and left atrial appendage function after catheter ablation for persistent atrial fibrillation. Circ J 77:1695–1704

    Article  PubMed  Google Scholar 

  30. La Meir M, Gelsomino S, Luca F, Pison L, Rao CM, Wellens F, Maessen JG (2013) Improvement of left atrial function and left atrial reverse remodeling after minimally invasive radiofrequency ablation evaluated by 2-dimensional speckle tracking echocardiography. J Thorac Cardiovasc Surg 146:72–77

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was supported in part by Grants-in-Aid (15K09103 and 16K01433 to T.I.) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Mr. John Martin for his help with the preparation of the manuscript and Mr. Osuka for his help in supporting this present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshisuke Morita.

Ethics declarations

Conflict of interest

This research received no grants from any funding agencies in the public, commercial, or not-for-profit sectors. The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, H., Morita, T., Tatebe, J. et al. The relationship between serum indoxyl sulfate and the renal function after catheter ablation of atrial fibrillation in patients with mild renal dysfunction. Heart Vessels 34, 641–649 (2019). https://doi.org/10.1007/s00380-018-1288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-018-1288-0

Keywords

Navigation