Skip to main content
Log in

Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Recently, a new generation of multi-detector row computed tomography (CT) with 320-detector rows (DR) has become available in the clinical settings. The purpose of the present study was to determine the cutoff values of Hounsfield unit (HU) for discrimination of plaque components by comparing HU of coronary plaques with integrated backscatter intravascular ultrasound (IB-IVUS) serving as a gold standard. Seventy-seven coronary atherosclerotic lesions in 77 patients with angina were visualized by both 320-DR CT (Aquilion One, Toshiba, Japan) and IB-IVUS at the same site. To determine the thresholds for discrimination of plaque components, we compared HU with IB values as a gold standard. Optimal thresholds were determined from receiver operating characteristic (ROC) curves analysis. The HU values of lipid pool (n = 115), fibrosis (n = 93), vessel lumen and calcification (n = 73) were 28 ± 19 HU (range −18 to 69 HU), 98 ± 31 HU (44 to 195 HU), 357 ± 65 HU (227 to 534 HU) and 998 ± 236 HU (366 to 1,489 HU), respectively. The thresholds of 56 HU, 210 HU and 490 HU were the most reliable predictors of lipid pool, fibrosis, vessel lumen and calcification, respectively. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS (r = 0.63, p < 0.05), whereas fibrous volume measured by 320-DR CT was not. Lipid volume measured by 320-DR CT was correlated with that measured by IB-IVUS, whereas fibrous volume was not correlated with that measured by IB-IVUS because manual exclusion of the outside of vessel hindered rigorous discrimination between fibrosis and extravascular components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mizuno K, Satomura K, Miyamoto A, Arakawa K, Shibuya T, Arai T, Kurita A, Nakamura H, Ambrose JA (1992) Angioscopic evaluation of coronary artery thrombi in acute coronary syndromes. N Engl J Med 326:287–291

    Article  PubMed  CAS  Google Scholar 

  2. Horie T, Sekiguchi M, Hirosawa K (1978) Coronary thrombosis in pathogenesis of acute myocardial infarction. Histopathological study of coronary arteries in 108 necropsied cases using serial section. Br Heart J 40:153–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  PubMed  CAS  Google Scholar 

  4. Ehara M, Surmely JF, Kawai M, Katoh O, Matsubara T, Terashima M, Tsuchikane E, Kinoshita Y, Suzuki T, Ito T, Takeda Y, Nasu K, Tanaka N, Murata A, Suzuki Y (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70:564–571

    Article  PubMed  Google Scholar 

  5. Hoffmann U, Moselewski F, Cury RC, Ferencik M, Jang IK, Diaz LJ, Abbara S, Brady TJ, Achenbach S (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  6. Moselewski F, Ropers D, Pohle K, Hoffmann U, Ferencik M, Chan RC, Cury RC, Abbara S, Jang IK, Brady TJ, Daniel WG, Achenbach S (2004) Measurement of cross-sectional coronary atherosclerotic plaques and vessel area by 16-slice multi-detector CT: Comparison to IVUS. Am J Cardiol 94:1294–1297

    Article  PubMed  Google Scholar 

  7. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47:1655–1662

    Article  PubMed  Google Scholar 

  8. Motoyama S, Anno H, Sarai M, Sato T, Sanda Y, Ozaki Y, Mochizuki T, Katada K, Hishida H (2008) Noninvasive coronary angiography with a prototype 256-row area detector computed tomography system: comparison with conventional invasive coronary angiography. J Am Coll Cardiol 51:773–775

    Article  PubMed  Google Scholar 

  9. Leber AW, Knez A, Becker A, Becker C, von Ziegler F, Nikolaou K, Rist C, Reiser M, White C, Steinbeck G, Boekstegers P (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques. A comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247

    Article  PubMed  Google Scholar 

  10. Pohle K, Achenbach S, MacNeill B, Ropers D, Ferencik M, Moselewski F, Hoffmann U, Brady TJ, Jang IK, Daniel WG (2006) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: Comparison to IVUS. Atherosclerosis 190:174–180

    Article  PubMed  CAS  Google Scholar 

  11. Kawasaki M, Sano K, Okubo M, Yokoyama H, Ito Y, Murata I, Tsuchiya K, Minatoguchi S, Zhou X, Fujita H, Fujiwara H (2005) Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol 45:1946–1953

    Article  PubMed  CAS  Google Scholar 

  12. Kawasaki M, Takatsu H, Noda T, Sano K, Ito Y, Hayakawa K, Tsuchiya K, Arai M, Nishigaki K, Takemura G, Minatoguchi S, Fujiwara T, Fujiwara H (2002) In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105:2487–2492

    Article  PubMed  Google Scholar 

  13. Tanaka S, Noda T, Iwama M, Tanihata S, Kawasaki M, Nishigaki K, Minagawa T, Watanabe S, Minatoguchi S (2013) Long-term changes in neointimal hyperplasia following implantation of bare metal stents assessed by integrated backscatter intravascular ultrasound. Heart Vessels 28:415–423

    Article  PubMed  Google Scholar 

  14. Sano K, Kawasaki M, Ishihara Y, Okubo M, Tsuchiya K, Nishigaki K, Zhou X, Minatoguchi S, Fujita H, Fujiwara H (2006) Assessment of vulnerable plaques causing acute coronary syndrome using integrated backscatter intravascular ultrasound. J Am Coll Cardiol 47:734–741

    Article  PubMed  Google Scholar 

  15. Iwama M, Tanaka S, Noda T, Segawa T, Kawasaki M, Nishigaki K, Minagawa T, Watanabe S, Minatoguchi S (2013) Impact of tissue characteristics on luminal narrowing of mild angiographic coronary stenosis: assessment of integrated backscatter intravascular ultrasound. Heart Vessels. doi:10.1007/s00380-013-0428-9

    Google Scholar 

  16. Okubo M, Kawasaki M, Ishihara Y, Takeyama U, Kubota T, Yamaki T, Ojio S, Nishigaki K, Takemura G, Saio M, Takami T, Minatoguchi S, Fujiwara H (2008) Development of integrated backscatter intravascular ultrasound for tissue characterization of coronary plaques. Ultrasound Med Biol 34:655–663

    Article  PubMed  Google Scholar 

  17. Yoneyama K, Vavere AL, Cerci R, Ahmed R, Arai AE, Niinuma H, Rybicki FJ, Rochitte CE, Clouse ME, George RT, Lima JA, Arbab-Zadeh A (2012) Influence of image acquisition settings on radiation dose and image quality in coronary angiography by 320-detector volume computed tomography: the CORE320 pilot experience. Heart Int 7:e11. doi:10.4081/hi.2012.e11

    Article  PubMed  PubMed Central  Google Scholar 

  18. Okubo M, Kawasaki M, Ishihara Y, Takeyama U, Yasuda S, Kubota T, Tanaka S, Yamaki T, Ojio S, Nishigaki K, Takemura G, Saio M, Takami T, Fujiwara H (2008) Tissue characterization of coronary plaques. Comparison of integrated backscatter intravascular ultrasound with Virtual Histology intravascular ultrasound. Circ J 72:1631–1639

    Article  PubMed  Google Scholar 

  19. Schneider CA, Rasband WS, Eliceiri KW (2002) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  20. Nikolaou K, Becker CR, Muders M, Babaryka G, Scheidler J, Flohr T, Loehrs U, Reiser MF, Fayad ZA (2004) Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 174:243–252

    Article  PubMed  CAS  Google Scholar 

  21. Carrascosa PM, Capunay CM, Garcia-Merletti P, Carrascosa J, Garcia MF (2006) Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol 97:598–602

    Article  PubMed  Google Scholar 

  22. Yamaki T, Kawasaki M, Jang IK, Raffel OC, Ishihara Y, Okubo M, Kubota T, Hattori A, Nishigaki K, Takemura G, Fujiwara H, Minatoguchi S (2012) Comparison between integrated backscatter intravascular ultrasound and 64-slice multi-detector row computed tomography for tissue characterization and volumetric assessment of coronary plaques. Cardiovasc Ultrasound 10:33. doi:10.1186/1476-7120-10-33

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tanaka A, Shimada K, Yoshida K, Jissyo S, Tanaka H, Sakamoto M, Matsuba K, Imanishi T, Akasaka T, Yoshikawa J (2008) Non-invasive assessment of plaque rupture by 64-slice multidetector computed tomography-comparison with intravascular ultrasound. Circ J 72:1276–1281

    Article  PubMed  Google Scholar 

  24. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326

    Article  PubMed  Google Scholar 

  25. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, Tanimoto T, Takemoto K, Takarada S, Kubo T, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T (2009) Feasibility of non-invasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 12:1412–1419

    Article  Google Scholar 

  26. Fujimoto S, Kondo T, Kodama T, Orihara T, Sugiyama J, Kondo M, Endo A, Fukazawa H, Nagaoka H, Oida A, Ikeda T, Yamazaki J, Takase S, Narula J (2012) Coronary computed tomography angiography-based coronary risk stratification in subjects presenting with no or atypical symptoms. Circ J 76:2419–2425

    Article  PubMed  Google Scholar 

  27. Uehara M, Funabashi N, Takaoka H, Fujimoto Y, Kobayashi Y (2014) False-positive findings in 320-slice cardiac CT for detection of severe coronary stenosis in comparison with invasive coronary angiography indicate poor prognosis for occurrence of MACE. Int J Cardiol 172:235–237

    Article  PubMed  Google Scholar 

  28. Cademartiri F, Runza G, Mollet NR, Luccichenti G, Belgrano M, Somers P, Knaapen M, Verheye S, Bruining N, Hamers R, Midiri M, De Feyter PJ, Krestin GP (2005) Influence of increasing convolution kernel filtering on plaque imaging with multislice CT using an ex vivo model of coronary angiography. Radiol Med 110:234–240

    PubMed  Google Scholar 

  29. Cademartiri F, Mollet NR, Runza G, Bruining N, Hamers R, Somers P, Knaapen M, Verheye S, Midiri M, Krestin GP, de Feyter PJ (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: Observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431

    Article  PubMed  Google Scholar 

  30. Maffei E, Martini C, Arcadi T, Clemente A, Seitun S, Zuccarelli A, Torri T, Mollet NR, Rossi A, Catalano O, Messalli G, Cademartiri F (2012) Plaque imaging with CT coronary angiography: Effect of intra-vascular attenuation on plaque type classification. World J Radiol 4:265–272

    Article  PubMed  PubMed Central  Google Scholar 

  31. Halliburton SS, Schoenhagen P, Nair A, Stillman A, Lieber M, Murat Tuzcu E, Geoffrey Vince D, White RD (2006) Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row computed tomography study of pressure-perfused, human ex vivo coronary arteries. Coron Artery Dis 176:553–560

    Article  Google Scholar 

  32. Takaoka H, Ishibashi I, Uehara M, Rubin GD, Komuro I, Funabashi N (2012) Comparison of image characteristics of plaques in culprit coronary arteries by 64 slice CT and intravascular ultrasound in acute coronary syndromes. Int J Cardiol 160:119–126

    Article  PubMed  Google Scholar 

  33. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92:1355–1374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We have no financial or other relations that could lead to conflict of interest.

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, S., Kawasaki, M., Miyata, S. et al. Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound. Heart Vessels 31, 29–37 (2016). https://doi.org/10.1007/s00380-014-0577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0577-5

Keywords

Navigation