Skip to main content

Advertisement

Log in

A P2X7 receptor antagonist attenuates experimental autoimmune myocarditis via suppressed myocardial CD4+ T and macrophage infiltration and NADPH oxidase 2/4 expression in mice

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Myocarditis is a clinically serious disease; however, no effective treatment has been elucidated. The P2X7 receptor is related to the pathophysiology of inflammation in many cardiovascular diseases. The P2X7 receptor antagonist is promising as an immunosuppressive treatment; however, its role in myocarditis is still to be established. To clarify the role of the P2X7 receptor, we used a murine experimental autoimmune myocarditis (EAM) model. Mice were immunized on day 0 and 7 with synthetic cardiac myosin peptide to establish EAM. The mice with induced EAM were treated with A740003, the P2X7 receptor antagonist (n = 10), or not treated (n = 11); hearts were harvested on day 21. The P2X7 receptor antagonist improved myocardial contraction of the EAM hearts via suppressed infiltration of CD4+ T cells and macrophages. Similarly, mRNA expression of interleukin 1 beta, the P2X7 receptor and NADPH oxidase 2/4 was lower in the heart of the P2X7 receptor antagonist-treated group compared to the non-treat group. The P2X7 receptor antagonist suppressed EAM development; thus, this inhibition is promising for treating clinical myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreka P, Nadhazi Z, Muzes G, Szantho G, Vandor L, Konya L, Turner MS, Tulassay Z, Bishopric NH (2004) Possible therapeutic targets in cardiac myocyte apoptosis. Curr Pharm Des 10:2445–2461

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki J, Ogawa M, Futamatsu H, Kosuge H, Sagesaka YM, Isobe M (2007) Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail 9:152–159

    Article  CAS  PubMed  Google Scholar 

  3. Ashigaki N, Suzuki J, Ogawa M, Watanabe R, Aoyama N, Kobayashi N, Hanatani T, Sekinishi A, Zempo H, Tada Y, Takamura C, Wakayama K, Hirata Y, Nagai R, Izumi Y, Isobe M (2013) Periodontal bacteria aggravate experimental autoimmune myocarditis in mice. Am J Physiol Heart Circ Physiol 304:H740–H748

    Article  CAS  PubMed  Google Scholar 

  4. Sagar S, Liu PP, Cooper LT (2012) Myocarditis. Lancet 379:738–747

    Article  PubMed  Google Scholar 

  5. Kawai C (1999) From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99:1091–1100

    Article  CAS  PubMed  Google Scholar 

  6. Caforio AL, Marcolongo R, Jahns R, Fu M, Felix SB, Iliceto S (2012) Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management. Heart Fail Rev 18:715–732

    Article  Google Scholar 

  7. Lv H, Havari E, Pinto S, Gottumukkala RV, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson RT, Smith R, Fletcher AL, Turley SJ, Wucherpfennig K, Kyewski B, Lipes MA (2011) Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 121:1561–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM (2012) Inflammation in myocardial diseases. Circ Res 110:126–144

    Article  CAS  PubMed  Google Scholar 

  9. Kishimoto C, Shioji K, Hashimoto T, Nonogi H, Lee JD, Kato S, Hiramitsu S, Morimoto SI (2013) Therapy with immunoglobulin in patients with acute myocarditis and cardiomyopathy: analysis of leukocyte balance. Heart Vessels. doi:10.1007/s00380-013-0368-4

    Google Scholar 

  10. Yuan J, Cao AL, Yu M, Lin QW, Yu X, Zhang JH, Wang M, Guo HP, Liao YH (2010) Th17 cells facilitate the humoral immune response in patients with acute viral myocarditis. J Clin Immunol 30:226–234

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki J, Ogawa M, Watanabe R, Morishita R, Hirata Y, Nagai R, Isobe M (2011) Autoimmune giant cell myocarditis: clinical characteristics, experimental models and future treatments. Expert Opin Ther Targets 15:1163–1172

    Article  CAS  PubMed  Google Scholar 

  12. Wiley JS, Sluyter R, Gu BJ, Stokes L, Fuller SJ (2011) The human P2X7 receptor and its role in innate immunity. Tissue Antigens 78:321–332

    Article  CAS  PubMed  Google Scholar 

  13. Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13:333–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez M, Domercq M (2007) P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    Article  CAS  PubMed  Google Scholar 

  15. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    Article  PubMed Central  PubMed  Google Scholar 

  16. Vergani A, Tezza S, D’Addio F, Fotino C, Liu K, Niewczas M, Bassi R, Molano RD, Kleffel S, Petrelli A, Soleti A, Ammirati E, Frigerio M, Visner G, Grassi F, Ferrero ME, Corradi D, Abdi R, Ricordi C, Sayegh MH, Pileggi A, Fiorina P (2013) Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation 127:463–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pummerer CL, Luze K, Grässl G, Bachmaier K, Offner F, Burrell SK, Lenz DM, Zamborelli TJ, Penninger JM, Neu N (1996) Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest 97:2057–2062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385

    Article  CAS  PubMed  Google Scholar 

  19. Seko Y, Takahashi N, Azuma M, Yagita H, Okumura K, Yazaki Y (1998) Effects of in vivo administration of anti-B7-1/B7-2 monoclonal antibodies on murine acute myocarditis caused by coxsackievirus B3. Circ Res 82:613–618

    Article  CAS  PubMed  Google Scholar 

  20. Shimoyama M, Hayashi D, Zou Y, Takimoto E, Mizukami M, Monzen K, Kudoh S, Hiroi Y, Yazaki Y, Nagai R, Komuro I (2000) Calcineurin inhibitor attenuates the development and induces the regression of cardiac hypertrophy in rats with salt-sensitive hypertension. Circulation 102:1996–2004

    Article  CAS  PubMed  Google Scholar 

  21. Futamatsu H, Suzuki J, Mizuno S, Koga N, Adachi S, Kosuge H, Maejima Y, Hirao K, Nakamura T, Isobe M (2005) Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ Res 96:823–830

    Article  CAS  PubMed  Google Scholar 

  22. Volonte C, Apolloni S, Skaper SD, Burnstock G (2012) P2X7 receptors: channels, pores and more. CNS Neurol Disord Drug Targets 11:705–721

    Article  CAS  Google Scholar 

  23. Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Han LN, Li TL, Zhang YJ, Yang TS, Ding Y (2011) Experimental study of MMP-2 inhibitor treatment of experimental autoimmune myocarditis in Lewis rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 27:452–456

    CAS  PubMed  Google Scholar 

  25. Han LN, Li TL, Zhang YJ, Yang TS, Ding Y, Zhao XN, Guo SL (2011) Effects of matrix metalloproteinase-9 inhibitor in Lewis rats with experimental autoimmune myocarditis. Zhonghua Xin Xue Guan Bing Za Zhi 39:118–123

    CAS  PubMed  Google Scholar 

  26. Kania G, Blyszczuk P, Eriksson U (2009) Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc Med 19:247–252

    Article  CAS  PubMed  Google Scholar 

  27. Nabeta T, Inomata T, Iida Y, Ikeda Y, Iwamoto M, Ishii S, Sato T, Watanabe I, Naruke T, Shinagawa H, Koitabashi T, Takeuchi I, Nishii M, Inoue Y, Izumi T (2013) Baseline cardiac magnetic resonance imaging versus baseline endomyocardial biopsy for the prediction of left ventricular reverse remodeling and prognosis in response to therapy in patients with idiopathic dilated cardiomyopathy. Heart Vessels. doi:10.1007/s00380-013-0415-1

    PubMed Central  Google Scholar 

  28. Smith SC, Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147:2141–2147

    CAS  PubMed  Google Scholar 

  29. Maier R, Miller S, Kurrer M, Krebs P, de Giuli R, Kremer M, Scandella E, Ludewig B (2005) Quantification and characterization of myosin peptide-specific CD4+ T cells in autoimmune myocarditis. J Immunol Methods 304:117–125

    Article  CAS  PubMed  Google Scholar 

  30. Göser S, Ottl R, Brodner A, Dengler TJ, Torzewski J, Egashira K, Rose NR, Katus HA, Kaya Z (2005) Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation 112:3400–3407

    Article  PubMed  Google Scholar 

  31. Lang PA, Merkler D, Funkner P, Shaabani N, Meryk A, Krings C, Barthuber C, Recher M, Brück W, Häussinger D, Ohashi PS, Lang KS (2010) Oxidized ATP inhibits T-cell-mediated autoimmunity. Eur J Immunol 40:2401–2408

    Article  CAS  PubMed  Google Scholar 

  32. Lemaire I, Falzoni S, Zhang B, Pellegatti P, Di Virgilio F (2011) The P2X7 receptor and Pannexin-1 are both required for the promotion of multinucleated macrophages by the inflammatory cytokine GM-CSF. J Immunol 187:3878–3887

    Article  CAS  PubMed  Google Scholar 

  33. Martel-Gallegos G, Rosales-Saavedra MT, Reyes JP, Casas-Pruneda G, Toro-Castillo C, Pérez-Cornejo P, Arreola J (2010) Human neutrophils do not express purinergic P2X7 receptors. Purinergic Signal 6:297–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

    Article  CAS  PubMed  Google Scholar 

  35. Ishiyama S, Hiroe M, Nishikawa T, Shimojo T, Abe S, Fujisaki H, Ito H, Yamakawa K, Kobayashi N, Kasajima T, Marumo F (1998) The Fas/Fas ligand system is involved in the pathogenesis of autoimmune myocarditis in rats. J Immunol 161:4695–4701

    CAS  PubMed  Google Scholar 

  36. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, Ricordi C, Westendorf AM, Grassi F (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4:ra12

    Article  PubMed  Google Scholar 

  37. Killeen ME, Ferris L, Kupetsky EA, Falo L Jr, Mathers AR (2013) Signaling through purinergic receptors for ATP induces human cutaneous innate and adaptive Th17 responses: implications in the pathogenesis of psoriasis. J Immunol 190:4324–4336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Noriko Tamura and Ms. Yasuko Matsuda for their excellent technical assistance. This study was supported by Takeda Science Foundation, Suzuken Memorial Foundation, the grant from the Research Foundation for Pharmaceutical Sciences, and the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).”

Conflict of interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zempo, H., Sugita, Y., Ogawa, M. et al. A P2X7 receptor antagonist attenuates experimental autoimmune myocarditis via suppressed myocardial CD4+ T and macrophage infiltration and NADPH oxidase 2/4 expression in mice. Heart Vessels 30, 527–533 (2015). https://doi.org/10.1007/s00380-014-0527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0527-2

Keywords

Navigation