Skip to main content
Log in

Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Ang II:

Angiotensin II

AOA:

Antioxidant ability

AT1:

Angiotensin receptor 1

ELISA:

Enzyme linked immunosorbent assay

FRAP:

The ferric reducing/antioxidant power assay

GPx:

Glutathione peroxidase

HHS:

Humid heat stress

HO-1:

Heme oxygenase 1

HRP:

Horseradish peroxidase

JNK:

c-Jun amino-terminal kinases

LDH:

Lactate dehydrogenase

MAPKs:

Mitogen-activated protein kinases

MDA:

Malondialdehyde

NAD(P)H:

Nicotinamide-adenine dinucleotide phosphate

qRT-PCR:

Quantitative real-time polymerase chain reaction

RAS:

Renin–angiotensin system

ROS:

Reactive oxygen species

RT:

Room temperature

SOD:

Superoxide dismutase

TBS:

Tris-buffered saline

TBST:

TBS and tween

TPTZ:

Tripyridyl-s-triazine

References

  1. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346:1978–1988

    Article  CAS  PubMed  Google Scholar 

  2. Shaver JF (1982) The basic mechanisms of fever: considerations for therapy. Nurse Pract 7:15–19

    Article  CAS  PubMed  Google Scholar 

  3. Qian L, Song X, Ren H, Gong J, Cheng S (2004) Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte. Cell Stress Chaperones 9:281–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hall DM, Buettner GR, Oberley LW, Xu L, Matthes RD, Gisolfi CV (2001) Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am J Physiol Heart Circ Physiol 280:H509–H521

    CAS  PubMed  Google Scholar 

  5. Hall DM, Baumgardner KR, Oberley TD, Gisolfi CV (1999) Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Physiol 276:G1195–G1203

    CAS  PubMed  Google Scholar 

  6. Fehrenbach E, Niess AM, Schlotz E (2000) Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol 89:704–710

    CAS  PubMed  Google Scholar 

  7. Steenland K (1996) Epidemiology of occupation and coronary heart disease: research agenda. Am J Ind Med 30:495–499

    Article  CAS  PubMed  Google Scholar 

  8. Chien KR (2000) Genomic circuits and the integrative biology of cardiac diseases. Nature 407:227–232

    Article  CAS  PubMed  Google Scholar 

  9. Qian LJ, Cheng SQ, Wu MP (1999) Changes of mitochondrial function in heat stressed rats. Chin J Pathol Physiol 15:333–335

    CAS  Google Scholar 

  10. Song XL, Qian LJ, Li FZ (2000) Injury of heat stress on rat cardiomyocytes. Chin J Appl Physiol 16:227–230

    CAS  Google Scholar 

  11. Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K (2013) Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels 28:646–657

    Article  PubMed  Google Scholar 

  12. Hall JE (1986) Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol 250:R960–R972

    CAS  PubMed  Google Scholar 

  13. Hall JE, Granger JP (1986) Adenosine alters glomerular filtration control by angiotensin II. Am J Physiol 250:F917–F923

    CAS  PubMed  Google Scholar 

  14. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 97:931–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Abe M, Suzuki H, Okada K, Maruyama N, Inoshita A, Baba S, Takashima H, Soma M (2013) Efficacy analysis of the renoprotective effects of aliskiren in hypertensive patients with chronic kidney disease. Heart Vessels 28:442–452

    Article  PubMed  Google Scholar 

  16. Hitomi H, Kiyomoto H, Nishiyama A (2007) Angiotensin II and oxidative stress. Curr Opin Cardiol 22:311–315

    Article  PubMed  Google Scholar 

  17. Salmeen A, Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7:560–577

    Article  CAS  PubMed  Google Scholar 

  18. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 273:15022–15029

    Article  CAS  PubMed  Google Scholar 

  19. Kyaw M, Yoshizumi M, Tsuchiya K, Kirima K, Tamaki T (2001) Antioxidants inhibit JNK and p38 MAPK activation but not ERK 1/2 activation by angiotensin II in rat aortic smooth muscle cells. Hypertens Res 24:251–261

    Article  CAS  PubMed  Google Scholar 

  20. Hogaboam CM, Vallance BA, Kumar A, Addison CL, Graham FL, Gauldie J, Collins SM (1997) Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease. J Clin Invest 100:2766–2776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Xing Z, Ohkawara Y, Jordana M, Graham F, Gauldie J (1996) Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia, monocytosis, and fibrotic reactions. J Clin Invest 97:1102–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280:12944–12955

    Article  CAS  PubMed  Google Scholar 

  23. Xi L, Hess ML, Kukreja RC (1998) Ischemic preconditioning in isolated perfused mouse heart: reduction in infarct size without improvement of post-ischemic ventricular function. Mol Cell Biochem 186:69–77

    Article  CAS  PubMed  Google Scholar 

  24. De Angelis N, Fiordaliso F, Latini R, Calvillo L, Funicello M, Gobbi M, Mennini T, Masson S (2002) Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat. J Mol Cell Cardiol 34:1655–1665

    Article  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  26. Havenith G, Luttikholt VG, Vrijkotte TG (1995) The relative influence of body characteristics on humid heat stress response. Eur J Appl Physiol Occup Physiol 70:270–279

    Article  CAS  PubMed  Google Scholar 

  27. Qin M, Rao ZR, Wang JJ, Zhao BM, Yang Q, Wang XX, Huang YX (2007) Influence of intrathecal injection of fluorocitrate on the protective effect of electroacupuncture on gastric mucosa in high humid heat stress rats. Zhen Ci Yan Jiu 32:158–162

    PubMed  Google Scholar 

  28. Sealey JE, Alderman MH, Furberg CD, Laragh JH (2013) Renin–angiotensin system blockers may create more risk than reward for sodium-depleted cardiovascular patients with high plasma renin levels. Am J Hypertens 26:727–738

    Article  CAS  PubMed  Google Scholar 

  29. Ellis KL, Palmer BR, Frampton CM, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Pilbrow AP, Skelton L, Yandle TG, Richards AM, Cameron VA (2013) Genetic variation in the renin–angiotensin–aldosterone system is associated with cardiovascular risk factors and early mortality in established coronary heart disease. J Hum Hypertens 27:237–244

    Article  CAS  PubMed  Google Scholar 

  30. Palomeque J, Sapia L, Hajjar RJ, Mattiazzi A, Vila Petroff M (2006) Angiotensin II-induced negative inotropy in rat ventricular myocytes: role of reactive oxygen species and p38 MAPK. Am J Physiol Heart Circ Physiol 290:H96–H106

    Article  CAS  PubMed  Google Scholar 

  31. Ichiyanagi O, Ishii K, Endoh M (2002) Angiotensin II increases L-type Ca2+ current in gramicidin D-perforated adult rabbit ventricular myocytes: comparison with conventional patch-clamp method. Pflugers Arch 444:107–116

    Article  CAS  PubMed  Google Scholar 

  32. Pradhan N, Rossi NF (2013) Interactions between the sympathetic nervous system and angiotensin system in renovascular hypertension. Curr Hypertens Rev 9:121–129

    Article  CAS  PubMed  Google Scholar 

  33. Low DA, Keller DM, Wingo JE, Brothers RM, Crandall CG (2011) Sympathetic nerve activity and whole body heat stress in humans. J Appl Physiol (1985) 111:1329–1334

    Article  Google Scholar 

  34. Cui J, Shibasaki M, Low DA, Keller DM, Davis SL, Crandall CG (2011) Muscle sympathetic responses during orthostasis in heat-stressed individuals. Clin Auton Res 21:381–387

    Article  PubMed Central  PubMed  Google Scholar 

  35. San Martin A, Du P, Dikalova A, Lassegue B, Aleman M, Gongora MC, Brown K, Joseph G, Harrison DG, Taylor WR, Jo H, Griendling KK (2007) Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. Am J Physiol Heart Circ Physiol 292:H2073–H2082

    Article  CAS  PubMed  Google Scholar 

  36. Lassegue B, Griendling KK (2004) Reactive oxygen species in hypertension. Am J Hypertens 17:852–860

    Article  CAS  PubMed  Google Scholar 

  37. Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  CAS  PubMed  Google Scholar 

  38. Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102:5–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    CAS  PubMed  Google Scholar 

  40. Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, Cohen RA (1995) An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol 268:H2274–H2280

    CAS  PubMed  Google Scholar 

  41. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H, Abe Y (2005) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45:860–866

    Article  CAS  PubMed  Google Scholar 

  42. Spurlock ME, Savage JE (1993) Effect of dietary protein and selected antioxidants on fatty liver hemorrhagic syndrome induced in Japanese quail. Poult Sci 72:2095–2105

    Article  CAS  PubMed  Google Scholar 

  43. Enkvetchakul B, Bottje W, Anthony N, Moore R, Huff W (1993) Compromised antioxidant status associated with ascites in broilers. Poult Sci 72:2272–2280

    Article  CAS  PubMed  Google Scholar 

  44. Kang YJ, Chen Y, Epstein PN (1996) Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem 271:12610–12616

    Article  CAS  PubMed  Google Scholar 

  45. Das J, Ghosh J, Manna P, Sil PC (2011) Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 81:891–909

    Article  CAS  PubMed  Google Scholar 

  46. Tone E, Kunisada K, Fujio Y, Matsui H, Negoro S, Oh H, Kishimoto T, Yamauchi-Takihara K (1998) Angiotensin II interferes with leukemia inhibitory factor-induced STAT3 activation in cardiac myocytes. Biochem Biophys Res Commun 253:147–150

    Article  CAS  PubMed  Google Scholar 

  47. Li HL, Suzuki J, Bayna E, Zhang FM, Dalle Molle E, Clark A, Engler RL, Lew WY (2002) Lipopolysaccharide induces apoptosis in adult rat ventricular myocytes via cardiac AT(1) receptors. Am J Physiol Heart Circ Physiol 283:H461–H467

    Article  CAS  PubMed  Google Scholar 

  48. Ding B, Abe J, Wei H, Huang Q, Walsh RA, Molina CA, Zhao A, Sadoshima J, Blaxall BC, Berk BC, Yan C (2005) Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation 111:2469–2476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P (1997) Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 29:859–870

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yuan, B., Dong, W. et al. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway. Heart Vessels 30, 396–405 (2015). https://doi.org/10.1007/s00380-014-0523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0523-6

Keywords

Navigation