Skip to main content
Log in

One-Dimensional Variational Retrieval of Temperature and Humidity Profiles from the FY4A GIIRS

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A physical retrieval approach based on the one-dimensional variational (1D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4A GIIRS (geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center (NSMC) during the periods from December 2019 to January 2020 (winter) and from July 2020 to August 2020 (summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error (RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there. Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg−1. Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 hPa and 300 hPa both in summer and winter in terms of RMSE.

摘要

本文基于FY-4A的干涉式大气垂直探测仪(GIIRS)红外高光谱资料,利用一维变分原理(1D-Var)的物理反演算法同时反演了晴空和部分云条件下的大气温度和湿度廓线。利用中国区域探空站点的无线电探空观测资料和国家卫星气象中心(NSMC)发布的L2级业务产品,验证了2019年12月至2020年1月(冬天)和2020年7月至2020年8月(夏天)温度和湿度廓线的反演精度。结果表明:与探空资料相比,晴空条件下,对流层各垂直气压层上(近地面除外),一维变分算法反演的温度均方根误差(RMSE)值在2 K以内。由于高层大气缺乏温度探测通道,平流层反演的温度RMSE值略有增加。部分云条件下,一维变分算法的反演精度优于L2级业务产品,而且利用一维变分反演算法可以反演整层大气的温度廓线,而L2级业务产品仅反演云顶以上高度的温度廓线。对于湿度廓线,无论冬季还是夏季,对流层整层平均的湿度RMSE值均在2 g kg-1内。与ERA5再分析资料相比,无论是冬季还是夏季,一维变分算法的反演精度在800-300 hPa气压层高度范围内都有所改进。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chahine, M. T., 1970: Inverse problems in radiative transfer: Determination of atmospheric parameters. J. Atmos. Sci., 27(6), 960–967, https://doi.org/10.1175/1520-0469(1970)027<0960:IPIRTD>2.0.CO;2.

    Article  Google Scholar 

  • Divakarla, M., and Coauthors, 2014: The CrIMSS EDR algorithm: Characterization, optimization, and validation. J. Geophys. Res., 119(8), 4953–4977, https://doi.org/10.1002/2013JD020438.

    Article  Google Scholar 

  • Duncan, D. I., and C. D. Kummerow, 2016: A 1DVAR retrieval applied to GMI: Algorithm description, validation, and sensitivities. J. Geophys. Res., 121(12), 7415–7429, https://doi.org/10.1002/2016JD024808.

    Article  Google Scholar 

  • Guan, L., 2006: Retrieving Atmospheric profiles from MODIS/AIRS observations. I. eigenvector regression algorithms. Journal of Nanjing Institute of Meteorology, 29(6), 756–761, https://doi.org/10.3969/j.issn.1674-7097.2006.06.005. (in Chinese with English abstract)

    Google Scholar 

  • Han, J., L. Guan, Z. H. Wang, and X. H. Zhang, 2009: The influence of surface temperature on the retrieval of clear-sky air temperature vertical profile. Atmospheric Science Research and Application, (1), 80–86. (in Chinese with English abstract)

  • He, M., D. H. Wang, W. Y. Ding, Y. J. Wan, Y. H. Chen, and Y. Zhang, 2019: A validation of Fengyun4A temperature and humidity profile products by radiosonde observations. Remote Sensing, 11(17), 2039, https://doi.org/10.3900/rs11172039.

    Article  Google Scholar 

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999–2049, https://doi.org/10.1002/qj.3803.

    Article  Google Scholar 

  • Jiang, D. M., C. H. Dong, and W. S. Lu, 2006: Preliminary study on the capacity of high spectral resolution infrared atmospheric sounding instrument using AIRS measurements. Journal of Remote Sensing, 10(4), 586–592. (in Chinese with English abstract)

    Google Scholar 

  • Kaplan, L. D., 1959: Inference of atmospheric structure from remote radiation measurements. Journal of the Optical Society of America, 49, 1004–1007, https://doi.org/10.1364/JOSA.49.001004.

    Article  Google Scholar 

  • King, J. I. F., 1956: The radiative heat transfer of planet Earth. Scientific Uses of Earth Satellites, J. A. Van Allen, Ed., University of Michigan Press, 133–136.

  • Li, J., and Q. C. Zeng, 1997a: Infrared remote sensing of clear atmosphere and its inversion problem. Part I: Theoretical study. Scientia Atmospherica Sinica, 21, 1–9, https://doi.org/10.3878/j.issn.1006-9895.1997.01.01. (in Chinese with English abstract)

    Google Scholar 

  • Li, J., and Q. C. Zeng, 1997b: Atmospheric infrared remote sensing and its retrieval problems in clear sky: II. Research on retrieval test. Chin. J. Atmos. Sci., 21, 87–95. (in Chinese)

    Google Scholar 

  • Li, J., W. W. Wolf, W. P. Menzel, W. J. Zhang, H. L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteorol. Climatol, 39(8), 1248–1268, https://doi.org/10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.

    Article  Google Scholar 

  • Liu, H., C. H. Dong, W. J. Zhang, and P. Zhang, 2008: Retrieval of clear-air atmospheric temperature profiles using AIRS observations. Acta Meteorologica Sinica, 66(4), 513–519, https://doi.org/10.3321/j.issn:0577-6619.2008.04.004. (in Chinese with English abstract)

    Google Scholar 

  • Liu, Q. H., and F. Z. Weng, 2005: One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43(5), 1087–1095, https://doi.org/10.1109/TGRS.2004.843211.

    Article  Google Scholar 

  • Lynch, R., J. L. Moncet, and X. Liu, 2009: Efficient nonlinear inversion for atmospheric sounding and other applications. Appl. Opt., 48(10), 1790–1796, https://doi.org/10.1364/AO.48.001790.

    Article  Google Scholar 

  • Malmgren-Hansen, D., V. Laparra, A. A. Nielsen, and G. Camps-Valls, 2019: Statistical retrieval of atmospheric profiles with deep convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 158, 231–240, https://doi.org/10.1016/j.isprsjprs.2019.10.002.

    Article  Google Scholar 

  • Martinet, P., A. Dabas, J. M. Donier, T. Douffet, O. Garrouste, and R. Guillot, 2015: 1D-Var temperature retrievals from microwave radiometer and convective scale model. Tellus A: Dynamic Meteorology and Oceanography, 67, 27925, https://doi.org/10.3402/tellusa.v67.27925.

    Article  Google Scholar 

  • Martinet, P., D. Cimini, F. De Angelis, G. Canut, V. Unger, R. Guillot, D. Tzanos, and A. Paci, 2017: Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: An Alpine valley case study. Atmospheric Measurement Techniques, 10(9), 3385–3402, https://doi.org/10.5194/amt-10-3385-2017.

    Article  Google Scholar 

  • McMillin, L. M., 1991: Evaluation of a classification method for retrieving atmospheric temperatures from satellite measurements. J. Appl. Meteorol. Climatol., 30(4), 432–446, https://doi.org/10.1175/1520-0450(1991)030<0432:EOACMF>2.0.CO;2.

    Article  Google Scholar 

  • Menzel, W. P., T. J. Schmit, P. Zhang, and J. Li, 2018: Satellite-based atmospheric infrared sounder development and applications. Bull. Amer. Meteor. Soc., 99(3), 583–603, https://doi.org/10.1175/BAMS-D-16-0293.1.

    Article  Google Scholar 

  • Paola, F. D., and Coauthors, 2018: MiRTaW: An algorithm for atmospheric temperature and water vapor profile estimation from ATMS measurements using a random forests technique. Remote Sensing, 10(9), 1398, https://doi.org/10.3390/rs10091398.

    Article  Google Scholar 

  • Pougatchev, N., and Coauthors, 2009: IASI temperature and water vapor retrievals — error assessment and validation. Atmospheric Chemistry and Physics, 9(17), 6453–6458, https://doi.org/10.5194/acp-9-6453-2009.

    Article  Google Scholar 

  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys., 14(4), 609–624, https://doi.org/10.1029/RG014i004p00609.

    Article  Google Scholar 

  • Singh, D., and R. C. Bhatia, 2006: Study of temperature and moisture profiles retrieved from microwave and hyperspectral infrared sounder data over Indian regions. Indian Journal of Radio & Space Physics, 35(4), 286–292.

    Google Scholar 

  • Smith, W. L., 1970: Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere. Appl. Opt., 9(9), 1993–1999, https://doi.org/10.1364/AO.9.001993.

    Article  Google Scholar 

  • Smith, W. L., and H. M. Woolf, 1976: The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations. J. Atmos. Sci., 33(7), 1127–1140, https://doi.org/10.1175/1520-0469(1976)033<1127:TUOEOS>2.0.CO;2.

    Article  Google Scholar 

  • Smith Sr, W. L., E. Weisz, S. V. Kireev, D. K. Zhou, Z. L. Li, and E. E. Borbas, 2012: Dual-regression retrieval algorithm for real-time processing of satellite ultraspectral radiances. J. Appl. Meteorol. Climatol., 51(8), 1455–1476, https://doi.org/10.1175/JAMC-D-11-0173.1.

    Article  Google Scholar 

  • Strow, L. L., S. E. Hannon, S. De Souza-Machado, H. E. Motteler, and D. Tobin, 2003: An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens., 41(2), 303–313, https://doi.org/10.1109/TGRS.2002.808244.

    Article  Google Scholar 

  • Susskind, J., C. Barnet, and J. Blaisdell, 1998: Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: Retrieval and cloud clearing methodology. Advances in Space Research, 21(3), 369–384, https://doi.org/10.1016/S0273-1177(97)00916-2.

    Article  Google Scholar 

  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41(2), 390–409, https://doi.org/10.1109/TGRS.2002.808236.

    Article  Google Scholar 

  • Weng, F., Y. Han, P. Van Delst, Q. Liu, T. Kleespices, B. Yan, and L. Marshal, 2005: JCSDA community 38 radiative transfer model. 14th Int. TOVS study Conf., Beijing, China, Int. TOVS Working Group, 217–222. (in Chinese)

    Google Scholar 

  • Wu, X. B., J. Li, W. J. Zhang, and F. Wang, 2005: Atmospheric profile retrieval with AIRS data and validation at the ARM CART site. Adv. Atmos. Sci., 22(5), 647–654, https://doi.org/10.1007/BF02918708.

    Article  Google Scholar 

  • Xi, R., and J. S. Wang, 1984: Modern Practical Regression Analysis. Guangxi People’s Publishing House. (in Chinese)

  • Xu, G. M.,: Inversion: Theory and Application. Seismological Press. (in Chinese)

  • Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98(8), 1637–1658, https://doi.org/10.1175/BAMS-D-16-0065.1.

    Article  Google Scholar 

  • Yao, Z. G., and H. B. Chen, 2006: Retrieval of atmospheric temperature profiles with neural network inversion of microwave radiometer data in 6 Channels near 118.75 GHz. Scientia Meteorologica Sinica, 26(3), 3252–3259, https://doi.org/10.3969/j.issn.1009-0827.2006.03.003. (in Chinese with English abstract)

    Google Scholar 

  • Yu, P. P., C. X. Shi, L. Yang, and S. Shan, 2020: A new temperature channel selection method based on singular spectrum analysis for retrieving atmospheric temperature profiles from FY-4A/GIIRS. Adv. Atmos. Sci., 37(7), 735–750, https://doi.org/10.1007/s00376-020-9249-9.

    Article  Google Scholar 

  • Zhang, J., Z. L. Li, J. Li, and J. L. Li, 2014: Ensemble retrieval of atmospheric temperature profiles from AIRS. Adv. Atmos. Sci., 31(3), 559–569, https://doi.org/10.1007/s00376-013-3094-z.

    Article  Google Scholar 

  • Zhang, P. C., and Z. H. Wang, 1995: Fundamentals of Atmospheric Microwave Remote Sensing. China Meteorological Press. (in Chinese)

  • Zong, X. M., 2020: Estimating the inversion accuracy of atmospheric temperature and water vapor profile under limb sounding. Journal of Applied Meteorological Science, 31(4), 471–481, https://doi.org/10.11898/1001-7313.20200409. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their helpful comments on the manuscript. This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC1507302, in part by the National Natural Science Foundation of China under Grant 41975028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guan.

Additional information

Article Highlights

• The 1D-Var physical retrieval algorithm is utilized to retrieve the atmospheric profiles under both clear-sky and partly cloudy conditions.

• The 1D-Var-retrieved atmospheric profiles can be produced at each vertical level while the NSMC level-2 operational products obtain temperature values only at altitudes above the cloud top and no humidity retrievals.

• The accuracy of the 1D-Var-retrieved temperature profiles is greatly improved compared with the accuracies of the NSMC operational level-2 products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Q., Guan, L. & Shi, X. One-Dimensional Variational Retrieval of Temperature and Humidity Profiles from the FY4A GIIRS. Adv. Atmos. Sci. 39, 471–486 (2022). https://doi.org/10.1007/s00376-021-1032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-021-1032-z

Key words

关键词

Navigation