Skip to main content
Log in

Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%–16.64%) than daytime (12.74%–14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%–31.07%) and smallest in summer (4.46%–6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.

摘要

地面和卫星观测是目前云观测中两个最重要的观测途径. MODIS 作为被动遥感卫星, 华北地区经常出现的雾霾天气中厚气溶胶团对太阳辐射的强迫作用将进一步影响其对云的观测. 目前的研究中, 对于华北地区卫星和地面观测的对比及影响其观测差异的可能因素, 以及不同云类型下二者的云量观测差异的研究仍旧不足. 本次研究对由 MODIS 卫星和地面观测站观测的华北地区总云量(TCC)进行了对比. 研究表明, MODIS 观测的总云量略大于地面观测. 其中, 夜间二者差别(16.64%)大于日间(14.14%), 而冬季差别(31.07%)明显大于夏季(6.07%). 而云顶高度较低以及光学厚度较小的云更容易出现较大的观测偏差. 影响观测差异的原因还有卫星观测角, 气溶胶光学厚度以及积雪. 对于多数类型的云, 卫星观测角, 气溶胶光学厚度以及积雪量越大, 其云量观测差异也越大. 其中, 垂直发展较为旺盛的积雨云以及破碎状的云受卫星观测角的影响比层状云更大; 而不能覆盖全天空的云相对覆盖全天空的云受到气溶胶光学厚度的影响更大.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, N., and K. C. Wang, 2015: A comparison of MODIS-derived cloud fraction with surface observations at five SURFRAD sites. Journal of Applied Meteorology and Climatology, 54, 1009–1020, https://doi.org/10.1175/JAMC-D-14-0206.1.

    Google Scholar 

  • Bilal, M., and J. E. Nichol, 2015: Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res., 120, 7941–7957, https://doi.org/10.1002/2015JD023082.

    Google Scholar 

  • Che, H., and Coauthors, 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014.

    Google Scholar 

  • Che, H. Z., G. Y. Shi, X. Y. Zhang, R. Arimoto, J. Q. Zhao, L. Xu, B. Wang, and Z. H. Chen, 2005: Analysis of 40 years of solar radiation data from China, 1961-2000. Geophys. Res. Lett., 32, L06803, https://doi.org/10.1029/2004GL022322.

    Google Scholar 

  • Che, H. Z., X. Y. Zhang, Y. Li, Z. J. Zhou, and J. J. Qu, 2007: Horizontal visibility trends in China 1981-2005. Geophys. Res. Lett., 34, L24706, https://doi.org/10.1029/2007GL031450.

    Google Scholar 

  • Chen, H. P., and H. J. Wang, 2015: Haze Days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res., 120, 5895–5909, https://doi.org/10.1002/2015JD023225.

    Google Scholar 

  • CMDSSS, 2009: China Meteorological Data Sharing Service System. China Meteorological Administration, Beijing, China. [Available at http://www.cma.gov.cn.]

    Google Scholar 

  • Dybbroe, A., K.-G. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteor., 44, 39–54, https://doi.org/10.1175/JAM-2188.1.

    Google Scholar 

  • Feister, U., H. Möller, T. Sattler, J. Shields, U. Görsdorf, and J. Güldner, 2010: Comparison of macroscopic cloud data from ground-based measurements using VIS/NIR and IR instruments at Lindenberg, Germany. Atmos. Res., 96, 395–407, https://doi.org/10.1016/j.atmosres.2010.01.012.

    Google Scholar 

  • Fontana, F., D. Lugrin, G. Seiz, M. Meier, and N. Foppa, 2013: Intercomparison of satellite- and ground-based cloud fraction over Switzerland (2000-2012). Atmos. Res., 128, 1–12, https://doi.org/10.1016/j.atmosres.2013.01.013.

    Google Scholar 

  • Green, M., S. Kondragunta, P. Ciren, and C. Y. Xu, 2009: Comparison of GOES and MODIS aerosol optical depth (AOD) to aerosol robotic network (AERONET) AOD and IMPROVE PM2.5mass at Bondville, Illinois. Journal of the Air & Waste Management Association, 59, 1082–1091, https://doi.org/10.3155/1047-3289.59.9.1082.

    Google Scholar 

  • Hahn, C. J., S. G. Warren, and J. London, 1992: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8,1429–1446, https://doi.org/10.1175/1520-0442(1995)008<1429:TEOMOO>2.0.CO;2.

    Google Scholar 

  • Hall, D. K., G. A. Riggs, and V. Salomonson, 2006: MODIS snow and sea ice products. Earth Science Satellite Remote Sensing, Qu et al., Eds., Springer, Berlin Heidelberg, 154–181, https://doi.org/10.1007/978-3-540-37293-69.

    Google Scholar 

  • Heidinger, A. K., V. R. Anne, and C. Dean, 2002: Using MODIS to estimate cloud contamination of the AVHRR data record. J. Atmos. Oceanic Technol, 19, 586–601, https://doi.org/10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2.

    Google Scholar 

  • Holz, R. E., S. A. Ackerman, F. W. Nagle, R. Frey, S. Dutcher, R. E. Kuehn, M. A. Vaughan, and B. Baum, 2008: Global moderate resolution imaging spectro radiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res., 113, D00A19, https://doi.org/10.1029/2008JD009837.

    Google Scholar 

  • Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067.

    Google Scholar 

  • Huo, J., and D. R. Lu, 2012: Comparison of cloud cover from allsky imager and meteorological observer. J. Atmos. Oceanic Technol., 29, 1093–1101, https://doi.org/10.1175/JTECH-D-11-00006.1.

    Google Scholar 

  • Kästner, M., P. Bissolli, and K. Hoppner, 2004: Comparison of a satellite based Alpine cloud climatology with observations of synoptic stations. Meteor. Z., 13, 233–243, https://doi.org/10.1127/0941-2948/2004/0013-0233.

    Google Scholar 

  • Kazantzidis, A., P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, 2012: Cloud detection and classification with the use of whole-sky ground-based images. Atmos. Res., 113, 80–88, https://doi.org/10.1016/j.atmosres.2012.05.005.

    Google Scholar 

  • Key, E. L., P. J. Minnett, and R. A. Jones, 2004: Cloud distributions over the coastal Arctic Ocean: Surface-based and satellite observations. Atmos. Res., 72, 57–88, https://doi.org/10.1016/j.atmosres.2004.03.029.

    Google Scholar 

  • Kotarba, A. Z., 2009: A comparison of MODIS-derived cloud amount with visual surface observations. Atmos. Res., 92, 522–530, https://doi.org/10.1016/j.atmosres.2009.02.001.

    Google Scholar 

  • Kotarba, A. Z., 2015: Evaluation of ISCCP cloud amount with MODIS observations. Atmos. Res., 153, 310–317, https://doi.org/10.1016/j.atmosres.2014.09.006.

    Google Scholar 

  • Levy, R. C., L. A. Remer, and O. Dubovik, 2007a: Global aerosol optical properties and application to Moderate Resolution Imaging Spectro radiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210, https://doi.org/10.1029/2006JD007815.

    Google Scholar 

  • Levy, R. C., L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, 2007b: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectro radiometer spectral reflectance. J. Geophys. Res., 112, D13211, https://doi.org/10.1029/2006JD007811.

    Google Scholar 

  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques Discussions, 6, 159–259, https://doi.org/10.5194/amtd-6-159-2013.

    Google Scholar 

  • Li, X. Y., 2016: Empirical analysis of the smog factors in Beijing-Tianjin-Hebei region. Ecological Economy, 32, 144–150, https://doi.org/10.3969/j.issn.1671-4407.2016.03.029. (in Chinese)

    Google Scholar 

  • Li, Z., and Coauthors, 2013: Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys., 13, 10 171–10 183, https://doi.org/10.5194/acp-13-10171-2013.

    Google Scholar 

  • Liang, F., and X. A. Xia, 2005: Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000. Annales Geophysicae, 23, 2425–2432, https://doi.org/10.5194/angeo-23-2425-2005.

    Google Scholar 

  • Lu, H., Y. W. Zhang, and J. Cai, 2015: Consistency and differences between remotely sensed and surface observed total cloud cover over China. Int. J. Remote Sens., 36, 4160–4176, https://doi.org/10.1080/01431161.2015.1072651.

    Google Scholar 

  • Luo, Y. F., D. R. Lu, X. J. Zhou, W. L. Li, and Q. He, 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res., 106, 14 501–14 513, https://doi.org/10.1029/2001JD900030.

    Google Scholar 

  • Ma, J. J., H. Wu, C. Wang, X. Zhang, Z. Q. Li, and X. H. Wang, 2014: Multiyear satellite and surface observations of cloud fraction over China. J. Geophys. Res., 119, 7655–7666, https://doi.org/10.1002/2013JD021413.

    Google Scholar 

  • Maddux, B. C., S. A. Ackerman, and S. Platnick, 2010: Viewing geometry dependencies in MODIS cloud products. J. Atmos. Oceanic Technol., 27, 1519–1528, https://doi.org/10.1175/2010JTECHA1432.1.

    Google Scholar 

  • Mao, F. Y., M. M. Duan, Q. L. Min, W. Gong, Z. X. Pan, and G. Y. Liu, 2015: Investigating the impact of haze on MODIS cloud detection. J. Geophys. Res., 120,12 237–12 247, https://doi.org/10.1002/2015JD023555.

    Google Scholar 

  • Meerkötter, R., C. König, P. Bissolli, G. Gesell, and H. Mannstein, 2004: A 14-year European Cloud Climatology from NOAA/AVHRR data in comparison to surface observations. Geophys. Res. Lett., 31, L15103, https://doi.org/10.1029/2004GL020098.

    Google Scholar 

  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. Journal of Applied Meteorology and Climatology, 47, 1175–1198, https://doi.org/10.1175/2007JAMC1705.1.

    Google Scholar 

  • Minnis, P., D. A. Spangenberg, and V. Chakrapani, 2003: Distribution and validation of cloud cover derived from AVHRR data over the Arctic Ocean during the SHEBA year. Proceedingsofthe13thARMScienceTeamMeeting, Broomfield, Colorado.

    Google Scholar 

  • Platnick, S., M. D. King, S. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riédi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Transactionson Geoscience and Remote Sensing, 41, 459–473, https://doi.org/10.1109/TGRS.2002.808301.

    Google Scholar 

  • Qiu, J. H., and L. Q. Yang, 2000: Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994. Atmos. Environ., 34, 603–609, https://doi.org/10.1016/S1352-2310(99)00173-9.

    Google Scholar 

  • Ramanathan, V.,R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63, https://doi.org/10.1126/science.243.4887.57.

    Google Scholar 

  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1.

    Google Scholar 

  • Rossow, W. B., A. W. Walker, and L. C. Garder, 1993: Comparison of ISCCP and other cloud amounts. J. Climate, 6, 2394–2418, https://doi.org/10.1175/1520-0442(1993)006<2394:COIAOC>2.0.CO;2.

    Google Scholar 

  • Shang, H. Z., L. F. Chen, J. H. Tao, L. Su, and S. L. Jia, 2014: Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China Plain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4879–4886, https://doi.org/10.1109/JSTARS.2014.2332427.

    Google Scholar 

  • Wang, H., G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li, 2015b: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region-Part 2: Aerosols’ radiative feedback effects. Atmos. Chem. Phys., 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015.

    Google Scholar 

  • Wang, H., and Coauthors, 2015c: Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby surrounding region-Part 1: Aerosol distributions and meteorological features. Atmos. Chem. Phys., 15, 3257–3275, https://doi.org/10.5194/acp-15-3257-2015.

    Google Scholar 

  • Wang, H. J., H. P. Chen, and J. P. Liu, 2015a: Arctic sea ice decline intensified haze pollution in eastern China. Atmos. Oceanic Sci. Lett., 8, 1–9, https://doi.org/10.3878/AOSL20140081.

    Google Scholar 

  • Wang, H. J., and Coauthors, 2015d: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149–168, https://doi.org/10.1007/s00376-014-0016-7.

    Google Scholar 

  • Warren, S. G., R. M. Eastman, and C. J. Hahn, 2007: A survey of changes in cloud cover and cloud types over land from surface observations, 1971-96. J. Climate, 20, 717–738, https://doi.org/10.1175/JCLI4031.1.

    Google Scholar 

  • Xia, X., 2010: A closer looking at dimming and brightening in China during 1961-2005. Annales Geophysicae, 28, 1121–1132, https://doi.org/10.5194/angeo-28-1121-2010.

    Google Scholar 

  • Zhang, R., and Coauthors, 2013: Chemical characterization and source apportionment of PM2.5. in Beijing: Seasonal perspective. Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41590874 and 41590875) and the Ministry of Science and Technology of China (Grant No. 2014CB953703). The MODIS cloud and aerosol properties were provided by the Level 1 and Atmosphere Archive and Distribution System of the NASA Goddard Space Flight Center. We are grateful to the China Meteorological Administration for providing the visual surface cloud cover data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saichun Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tan, S. & Shi, G. Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain. Adv. Atmos. Sci. 35, 146–157 (2018). https://doi.org/10.1007/s00376-017-7070-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7070-x

Keywords

关键词

Navigation