Skip to main content
Log in

Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The presence of light-absorbing aerosols (LAA) in snow profoundly influence the surface energy balance and water budget. However, most snow-process schemes in land-surface and climate models currently do not take this into consideration. To better represent the snow process and to evaluate the impacts of LAA on snow, this study presents an improved snow albedo parameterization in the Snow–Atmosphere–Soil Transfer (SAST) model, which includes the impacts of LAA on snow. Specifically, the Snow, Ice and Aerosol Radiation (SNICAR) model is incorporated into the SAST model with an LAA mass stratigraphy scheme. The new coupled model is validated against in-situ measurements at the Swamp Angel Study Plot (SASP), Colorado, USA. Results show that the snow albedo and snow depth are better reproduced than those in the original SAST, particularly during the period of snow ablation. Furthermore, the impacts of LAA on snow are estimated in the coupled model through case comparisons of the snowpack, with or without LAA. The LAA particles directly absorb extra solar radiation, which accelerates the growth rate of the snow grain size. Meanwhile, these larger snow particles favor more radiative absorption. The average total radiative forcing of the LAA at the SASP is 47.5 W m−2. This extra radiative absorption enhances the snowmelt rate. As a result, the peak runoff time and “snow all gone” day have shifted 18 and 19.5 days earlier, respectively, which could further impose substantial impacts on the hydrologic cycle and atmospheric processes.

摘 要

积雪中的吸光性气溶胶可以对地表能量平衡和水平衡产生显著的影响. 然而, 在当前考虑了积雪过程方案的陆面和气候模式中, 大多数方案却忽视了气溶胶带来的这些影响. 为了更好地再现积雪过程并评估吸光性气溶胶对积雪的影响, 本文采用了雪-冰-气溶胶辐射模型(SNICAR)来改进雪-大气-土壤传输模型(SAST)中的积雪反照率参数化方案, 并使用美国科罗拉多 SASP 站点观测资料验证了该耦合模式. 结果表明, 相比原始模式, 新耦合的模式可以更好地再现积雪反照率和雪深的变化, 特别是在融雪期间. 此外, 为了进一步评估气溶胶对积雪的影响, 本文利用新耦合模式分别模拟了干净的雪和含吸光性气溶胶的积雪的季节变化特征. 模拟结果显示, 吸光性气溶胶可以吸收额外的太阳辐射, 使得积雪粒子粒径增长, 而同时, 粒径的增长有利于积雪粒子吸收更多的辐射能量. 在 SASP站, 吸光性气溶胶的平均辐射强迫为47.5 W m−2. 该额外辐射吸收量提高了积雪融化率, 使得径流峰值时间和积雪完全融化的时间分别提前了平均 18 和 19.5 天, 而这将对后续的水文和大气过程产生重要影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, Office of Hydrology, National Weather Service, Silver Spring.

    Google Scholar 

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snowdominated regions. Nature, 438, 303–309, doi: 10.1038/nature04141.

    Article  Google Scholar 

  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661–686, doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    Article  Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. John Wiley & Sons, 530 pp.

    Google Scholar 

  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552, doi: 10.1002/jgrd.50171.

    Google Scholar 

  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445–3482, doi: 10.1175/JCLI3819.1.

    Article  Google Scholar 

  • Bryant, A. C., T. H. Painter, J. S. Deems, and S. M. Bender, 2013: Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin. Geophys. Res. Lett., 40, 3945–3949, doi: 10.1002/grl.50773.

    Article  Google Scholar 

  • Conway, H., A. Gades, and C. F. Raymond, 1996: Albedo of dirty snow during conditions of melt. Water Resour. Res., 32, 1713–1718, doi: 10.1029/96WR00712.

    Article  Google Scholar 

  • Di Mauro, B., F. Fava, L. Ferrero, R. Garzonio, G. Baccolo, B. Delmonte, and R. Colombo, 2015: Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res., 120, 6080–6097, doi: 10.1002/2015JD023287.

    Google Scholar 

  • Essery, R., S. Morin, Y. Lejeune, and C. B Ménard, 2013: A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources, 55, 131–148, doi: 10.1016/j.advwatres.2012.07.013.

    Article  Google Scholar 

  • Flanner, M. G., and C. S. Zender, 2005: Snowpack radiative heating: Influence on Tibetan Plateau climate. Geophys. Res. Lett., 32, L06501, doi: 10.1029/2004GL022076.

    Article  Google Scholar 

  • Flanner, M. G., and C. S. Zender, 2006: Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111, D12208, doi: 10.1029/2005JD006834.

    Article  Google Scholar 

  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.

    Article  Google Scholar 

  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmospheric Chemistry and Physics, 9, 2481–2497, doi: 10.5194/acp-9-2481-2009.

    Article  Google Scholar 

  • Franz, K. J., T. S. Hogue, and S. Sorooshian, 2008: Snow model verification using ensemble prediction and operational benchmarks. Journal of Hydrometeorology, 9, 1402–1415, doi: 10.1175/2008JHM995.1.

    Article  Google Scholar 

  • Gray, D. M., and P. G. Landine, 1987: Albedo model for shallow prairie snow covers. Canadian Journal of Earth Sciences, 24, 1760–1768, doi: 10.1139/e87-168.

    Article  Google Scholar 

  • Groisman, P. Y., T. R. Karl, and R. W. Knight, 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198–200, doi: 10.1126/science.263.5144.198.

    Article  Google Scholar 

  • Hadley, O. L., and T. W. Kirchstetter, 2012: Black-carbon reduction of snow albedo. Nat. Clim. Change, 2, 437–440, doi: 10.1038/nclimate1433.

    Article  Google Scholar 

  • Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. U. S. A., 101, 423–428, doi: 10.1073/pnas.2237157100.

    Article  Google Scholar 

  • Henderson-Sellers, A., Z. L. Yang, and R. E. Dickinson, 1993: The project for intercomparison of land-surface parameterization schemes. Bull. Amer. Meteor. Soc., 74, 1335–1349, doi: 10.1175/1520-0477(1993)074<1335:TPFIOL>2.0.CO;2.

    Article  Google Scholar 

  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover. Tech. Documentation for SNTHERM, 89, Special Rep. 91–16, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

    Google Scholar 

  • Klok, E. J., and J. Oerlemans, 2004: Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parameterization. Int. J. Climatol., 24, 231–245, doi: 10.1002/joc.994.

    Article  Google Scholar 

  • Landry, C. C., K. A. Buck, M. S. Raleigh, and M. P. Clark, 2014: Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res., 50, 1773–1788, doi: 10.1002/2013WR013711.

    Article  Google Scholar 

  • Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res., 98, 10451–10464, doi: 10.1029/93JD00324.

    Article  Google Scholar 

  • McConnell, J. R., and Coauthors, 2007: 20th-century industrial black carbon emissions altered arctic climate forcing. Science, 317, 1381–1384, doi: 10.1126/science.1144856.

    Article  Google Scholar 

  • Nijssen, B., and Coauthors, 2003: Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e): 2: Comparison of model results with observations. Global and Planetary Change, 38, 31–53, doi: 10.1016/S0921-8181(03)00004-3.

    Article  Google Scholar 

  • Oaida, C. M., Y. K. Xue, M. G. Flanner, S. M. Skiles, F. De Sales, and T. H. Painter, 2015: Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S. J. Geophys. Res., 120, 3228–3248, doi: 10.1002/2014JD022444.

    Google Scholar 

  • Oleson, K.W., and Coauthors, 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, CO, doi: 10.5065/D6FB50WZ.

    Google Scholar 

  • Painter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer, 2007: Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett., 34, L12502, doi: 10.1029/2007GL030284.

    Article  Google Scholar 

  • Painter, T. H., J. S. Deems, J. Belnap, A. F. Hamlet, C. C. Landry, and B. Udall, 2010: Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl. Acad. Sci. U. S. A., 107, 17125–17130, doi: 10.1073/pnas.0913139107.

    Article  Google Scholar 

  • Painter, T. H., S. M. Skiles, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record of energy balance, radiation, and dust concentrations. Water Resour. Res., 48, W07521, doi: 10.1029/2012WR011985.

    Article  Google Scholar 

  • Qian, Y., W. I. Gustafson Jr., L. R. Leung, and S. J. Ghan, 2009: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114, D03108, doi: 10.1029/2008JD011039.

    Article  Google Scholar 

  • Qian, Y., M. G. Flanner, L. R. Leung, and W. Wang, 2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. and Phys., 11, 1929–1948, doi: 10.5194/acp-11-1929-2011.

    Article  Google Scholar 

  • Qian, Y., and Coauthors, 2015: Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci., 32, 64–91, doi: 10.1007/s00376-014-0010-0.

    Article  Google Scholar 

  • Qu, X., and A. Hall, 2007: What controls the strength of snowalbedo feedback? J. Climate, 20, 3971–3981, doi: 10.1175/JCLI4186.1.

    Article  Google Scholar 

  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221–227, doi: 10.1038/ngeo156.

    Article  Google Scholar 

  • Randall, D. A., and Coauthors, 1994: Analysis of snow feedbacks in 14 general circulation models. J. Geophys. Res., 99, 20757–20771, doi: 10.1029/94JD01633.

    Article  Google Scholar 

  • Randerson, J. T., and Coauthors, 2006: The impact of boreal forest fire on climate warming. Science, 314, 1130–1132, doi: 10.1126/science.1132075.

    Article  Google Scholar 

  • Robock, A., 1980: The seasonal cycle of snow cover, sea ice and surface albedo. Mon. Wea. Rev., 108, 267–285, doi: 10.1175/1520-0493(1980)108<0267:TSCOSC>2.0.CO;2.

    Article  Google Scholar 

  • Robock, A., 1983: Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J. Atmos. Sci., 40, 986–997, doi: 10.1175/1520-0469(1983)040<0986: IASFAT>2.0.CO;2.

    Article  Google Scholar 

  • Roeckner, E., and Coauthors, 2003: The Atmospheric General Circulation Model ECHAM5, Part 1. Tech. Rep. No. 349, Max-Planck-Institute for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi: 10.1029/2008JD011063.

    Article  Google Scholar 

  • Siemer, A. H., 1988: One dimensional EBM of a snow cover taking into account liquid water transmission. Ber. Inst. Meteorol., 34, 126.

    Google Scholar 

  • Skiles, S. M., and T. Painter, 2017: Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol., 63, 118–132, doi: 10.1017/jog.2016.125.

    Article  Google Scholar 

  • Skiles, S. M., T. Painter, and G. S. Okin, 2017: A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow. J. Glaciol., 63, 133–147, doi: 10.1017/jog.2016.126.

    Article  Google Scholar 

  • Skiles, S. M., T. H. Painter, J. S. Deems, A. C. Bryant, and C. C. Landry, 2012: Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res., 48, W07522, doi: 10.1029/2012WR011986.

    Article  Google Scholar 

  • Steltzer, H., C. Landry, T. H. Painter, J. Anderson, and E. Ayres, 2009: Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. Proceedings of the National Academy of Sciences of the United States of America, 106, 11629–11634, doi: 10.1073/pnas. 0900758106.

    Article  Google Scholar 

  • Sun, S. F., and Y. K. Xue, 2001: Implementing a new snow scheme in simplified simple biosphere model. Adv. Atmos. Sci., 18, 335–354, doi: 10.1007/BF02919314.

    Article  Google Scholar 

  • Sun, S. F., J. M. Jin, and Y. K. Xue, 1999: A simple snowatmosphere-soil transfer model. J. Geophys. Res., 104, 19587–19597, doi: 10.1029/1999JD900305.

    Article  Google Scholar 

  • Thackeray, C. W., and C. G. Fletcher, 2016: Snow albedo feedback: Current knowledge, importance, outstanding issues and future directions. Progress in Physical Geography, 40, 392–408, doi: 10.1177/0309133315620999.

    Article  Google Scholar 

  • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res., 94, 16287–16301, doi: 10.1029/JD094iD13p16287.

    Article  Google Scholar 

  • Verseghy, D. L., 1991: Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111–133, doi: 10.1002/joc.3370110202.

    Article  Google Scholar 

  • Vionnet, V., E. Brun, S. Morin, A. Boone, S. Faroux, P. Le Moigne, E. Martin, and J.-M. Willemet, 2012: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geoscientific Model Development, 5, 773–791, doi: 10.5194/gmd-5-773-2012.

    Article  Google Scholar 

  • Waliser, D., and Coauthors, 2011: Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics. Climatic Change, 109, 95–117, doi: 10.1007/s10584-011-0312-5.

    Article  Google Scholar 

  • Warren, S. G., and W. J. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734–2745, doi: 10.1175/1520-0469(1980) 037<2734:AMFTSA>2.0.CO;2.

    Article  Google Scholar 

  • Wiscombe, W. J., and S. G. Warren, 1980: A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci., 37, 2712–2733, doi: 10.1175/1520-0469(1980)037<2712:AMFTSA> 2.0.CO;2.

    Article  Google Scholar 

  • Xu, B. Q., and Coauthors, 2009: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. U. S. A., 106, 22114–22118, doi: 10.1073/pnas.0910444106.

    Article  Google Scholar 

  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364, doi: 10.1175/1520-0442(1991)004<0345: ASBMFG>2.0.CO;2.

    Article  Google Scholar 

  • Yang, F. L., A. Kumar, W. Q. Wang, H. M. H. Juang, and M. Kanamitsu, 2001: Snow-albedo feedback and seasonal climate variability over North America. J. Climate, 14, 4245–4248, doi: 10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Center for Snow and Avalanche Studies and Mr. Jeff DERRY for the data availability. We also thank the two anonymous reviewers for their helpful comments, which improved the paper. This work was supported jointly by projects from the National Natural Science Foundation of China (Grant No. 41275003) and the National Key Basic Research and Development Projects of China (Grant No. 2014CB953903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, E., Li, Q., Sun, S. et al. Improvement of a snow albedo parameterization in the Snow–Atmosphere–Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover. Adv. Atmos. Sci. 34, 1333–1345 (2017). https://doi.org/10.1007/s00376-017-7019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7019-0

Key words

关键词

Navigation